Search Results

You are looking at 11 - 15 of 15 items for :

  • Author or Editor: Sebastien Masson x
  • Journal of Climate x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Yushi Morioka
,
Tomoki Tozuka
,
Sebastien Masson
,
Pascal Terray
,
Jing-Jia Luo
, and
Toshio Yamagata

Abstract

The growth and decay mechanisms of subtropical dipole modes in the southern Indian and South Atlantic Oceans and their impacts on southern African rainfall are investigated using results from a coupled general circulation model originally developed for predicting tropical climate variations. The second (most) dominant mode of interannual sea surface temperature (SST) variations in the southern Indian (South Atlantic) Ocean represents a northeast–southwest oriented dipole, now called subtropical dipole mode. The positive (negative) SST interannual anomaly pole starts to grow in austral spring and reaches its peak in February. In austral late spring, the suppressed (enhanced) latent heat flux loss associated with the variations in the subtropical high causes a thinner (thicker) than normal mixed layer thickness that, in turn, enhances (reduces) the warming of the mixed layer by the climatological shortwave radiation. The positive (negative) pole gradually decays in austral fall because the mixed layer cooling by the entrainment is enhanced (reduced), mostly owing to the larger (smaller) temperature difference between the mixed layer and the entrained water. The increased (decreased) latent heat loss due to the warmer (colder) SST also contributes to the decay of the positive (negative) pole. Although further verification using longer observational data is required, the present coupled model suggests that the South Atlantic subtropical dipole may play a more important role in rainfall variations over the southern African region than the Indian Ocean subtropical dipole.

Full access
Yushi Morioka
,
Sébastien Masson
,
Pascal Terray
,
Chloé Prodhomme
,
Swadhin K. Behera
, and
Yukio Masumoto

Abstract

Interannual variations of sea surface temperature (SST) in the midlatitudes of the Southern Hemisphere play an important role in the rainfall variability over the surrounding countries by modulating synoptic-scale atmospheric disturbances. These are frequently associated with a northeast–southwest-oriented dipole of positive and negative SST anomalies in each oceanic basin, referred to as a subtropical dipole. This study investigates the role of tropical SST variability on the generation of subtropical dipoles by conducting SST-nudging experiments using a coupled general circulation model. In the experiments where the simulated SST in each tropical basin is nudged to the climatology of the observed SST, the subtropical dipoles tend to occur as frequently as the case in which the simulated SST is allowed to freely interact with the atmosphere. It is found that without the tropical SST variability, the zonally elongated atmospheric mode in the mid- to high latitudes, called the Antarctic Oscillation (AAO), becomes dominant and the stationary Rossby waves related to the AAO induce the sea level pressure (SLP) anomalies in the midlatitudes, which, in turn, generate the subtropical dipoles. These results suggest that the tropical SST variability may not be necessary for generating the subtropical dipoles, and hence provide a useful insight into the important role of the AAO in the midlatitude climate variability.

Full access
Annalisa Cherchi
,
Silvio Gualdi
,
Swadhin Behera
,
Jing Jia Luo
,
Sebastien Masson
,
Toshio Yamagata
, and
Antonio Navarra

Abstract

The Indian summer monsoon (ISM) is one of the main components of the Asian summer monsoon. It is well known that one of the starting mechanisms of a summer monsoon is the thermal contrast between land and ocean and that sea surface temperature (SST) and moisture are crucial factors for its evolution and intensity. The Indian Ocean, therefore, may play a very important role in the generation and evolution of the ISM itself. A coupled general circulation model, implemented with a high-resolution atmospheric component, appears to be able to simulate the Indian summer monsoon in a realistic way. In particular, the features of the simulated ISM variability are similar to the observations.

In this study, the relationships between the ISM and tropical Indian Ocean (TIO) SST anomalies are investigated, as well as the ability of the coupled model to capture those connections. The recent discovery of the Indian Ocean dipole mode (IODM) may suggest new perspectives in the relationship between ISM and TIO SST. A new statistical technique, the coupled manifold, is used to investigate the TIO SST variability and its relation with the tropical Pacific Ocean (TPO). The analysis shows that the SST variability in the TIO contains a significant portion that is independent from the TPO variability. The same technique is used to estimate the amount of Indian rainfall variability that can be explained by the tropical Indian Ocean SST. Indian Ocean SST anomalies are separated in a part remotely forced from the tropical Pacific Ocean variability and a part independent from that. The relationships between the two SSTA components and the Indian monsoon variability are then investigated in detail.

Full access
Suryachandra A. Rao
,
Sebastien Masson
,
Jing-Jia Luo
,
Swadhin K. Behera
, and
Toshio Yamagata

Abstract

Using 200 yr of coupled general circulation model (CGCM) results, causes for the termination of Indian Ocean dipole (IOD) events are investigated. The CGCM used here is the Scale Interaction Experiment-Frontier Research Center for Global Change (SINTEX-F1) model, which consists of a version of the European Community–Hamburg (ECHAM4.6) atmospheric model and a version of the Ocean Parallelise (OPA8.2) ocean general circulation model. This model reproduces reasonably well the present-day climatology and interannual signals of the Indian and Pacific Oceans. The main characteristics of the intraseasonal disturbances (ISDs)/oscillations are also fairly well captured by this model. However, the eastward propagation of ISDs in the model is relatively fast in the Indian Ocean and stationary in the Pacific compared to observations.

A sudden reversal of equatorial zonal winds is observed, as a result of significant intraseasonal disturbances in the equatorial Indian Ocean in November–December of IOD events, which evolve independently of ENSO. A majority of these IOD events (15 out of 18) are terminated mainly because of the 20–40-day ISD activity in the equatorial zonal winds. Ocean heat budget analysis in the upper 50 m clearly shows that the initial warming after the peak of the IOD phenomenon is triggered by increased solar radiation owing to clear-sky conditions in the eastern Indian Ocean. Subsequently, the equatorial jets excited by the ISD deepen the thermocline in the southeastern equatorial Indian Ocean. This deepening of the thermocline inhibits the vertical entrainment of cool waters and therefore the IOD is terminated. IOD events that co-occur with ENSO are terminated owing to anomalous incoming solar radiation as a result of prevailing cloud-free skies. Further warming occurs seasonally through the vertical convergence of heat due to a monsoonal wind reversal along Sumatra–Java. On occasion, strong ISD activities in July–August terminated short-lived IOD events by triggering downwelling intraseasonal equatorial Kelvin waves.

Full access
Swadhin K. Behera
,
Jing-Jia Luo
,
Sebastien Masson
,
Pascale Delecluse
,
Silvio Gualdi
,
Antonio Navarra
, and
Toshio Yamagata

Abstract

The variability in the East African short rains is investigated using 41-yr data from the observation and 200-yr data from a coupled general circulation model known as the Scale Interaction Experiment-Frontier Research Center for Global Change, version 1 (SINTEX-F1). The model-simulated data provide a scope to understand the climate variability in the region with a better statistical confidence. Most of the variability in the model short rains is linked to the basinwide large-scale coupled mode, that is, the Indian Ocean dipole (IOD) in the tropical Indian Ocean. The analysis of observed data and model results reveals that the influence of the IOD on short rains is overwhelming as compared to that of the El Niño–Southern Oscillation (ENSO); the correlation between ENSO and short rains is insignificant when the IOD influence is excluded. The IOD–short rains relationship does not change significantly in a model experiment in which the ENSO influence is removed by decoupling the ocean and atmosphere in the tropical Pacific. The partial correlation analysis of the model data demonstrates that a secondary influence comes from a regional mode located near the African coast.

Inconsistent with the observational findings, the model results show a steady evolution of IOD prior to extreme events of short rains. Dynamically consistent evolution of correlations is found in anomalies of the surface winds, currents, sea surface height, and sea surface temperature. Anomalous changes of the Walker circulation provide a necessary driving mechanism for anomalous moisture transport and convection over the coastal East Africa. The model results nicely augment the observational findings and provide us with a physical basis to consider IOD as a predictor for variations of the short rains. This is demonstrated in detail using the statistical analysis method. The prediction skill of the dipole mode SST index in July and August is 92% for the observation, which scales slightly higher for the model index (96%) in August. As observed in data, the model results show decadal weakening in the relationship between IOD and short rains owing to weakening in the IOD activity.

Full access