Search Results

You are looking at 11 - 16 of 16 items for

  • Author or Editor: Steven Platnick x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Chenxi Wang, Ping Yang, Steven Platnick, Andrew K. Heidinger, Bryan A. Baum, Thomas Greenwald, Zhibo Zhang, and Robert E. Holz

Abstract

A computationally efficient high-spectral-resolution cloudy-sky radiative transfer model (HRTM) in the thermal infrared region (700–1300 cm−1, 0.1 cm−1 spectral resolution) is advanced for simulating the upwelling radiance at the top of atmosphere and for retrieving cloud properties. A precomputed transmittance database is generated for simulating the absorption contributed by up to seven major atmospheric absorptive gases (H2O, CO2, O3, O2, CH4, CO, and N2O) by using a rigorous line-by-line radiative transfer model (LBLRTM). Both the line absorption of individual gases and continuum absorption are included in the database. A high-spectral-resolution ice particle bulk scattering properties database is employed to simulate the radiation transfer within a vertically nonisothermal ice cloud layer. Inherent to HRTM are sensor spectral response functions that couple with high-spectral-resolution measurements in the thermal infrared regions from instruments such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer. When compared with the LBLRTM and the discrete ordinates radiative transfer model (DISORT), the root-mean-square error of HRTM-simulated single-layer cloud brightness temperatures in the thermal infrared window region is generally smaller than 0.2 K. An ice cloud optical property retrieval scheme is developed using collocated AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) data. A retrieval method is proposed to take advantage of the high-spectral-resolution instrument. On the basis of the forward model and retrieval method, a case study is presented for the simultaneous retrieval of ice cloud optical thickness τ and effective particle size D eff that includes a cloud-top-altitude self-adjustment approach to improve consistency with simulations.

Full access
Michael D. King, Steven Platnick, Ping Yang, G. Thomas Arnold, Mark A. Gray, Jérôme C. Riedi, Steven A. Ackerman, and Kuo-Nan Liou

Abstract

A multispectral scanning spectrometer was used to obtain measurements of the bidirectional reflectance and brightness temperature of clouds, sea ice, snow, and tundra surfaces at 50 discrete wavelengths between 0.47 and 14.0 μm. These observations were obtained from the NASA ER-2 aircraft as part of the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) Arctic Clouds Experiment, conducted over a 1600 km × 500 km region of the north slope of Alaska and surrounding Beaufort and Chukchi Seas between 18 May and 6 June 1998. Multispectral images in eight distinct bands of the Moderate Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator (MAS) were used to derive a confidence in clear sky (or alternatively the probability of cloud) over five different ecosystems. Based on the results of individual tests run as part of this cloud mask, an algorithm was developed to estimate the phase of the clouds (liquid water, ice, or undetermined phase). Finally, the cloud optical thickness and effective radius were derived for both water and ice clouds that were detected during one flight line on 4 June.

This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS data in Alaska, is quite capable of distinguishing clouds from bright sea ice surfaces during daytime conditions in the high Arctic. Results of individual tests, however, make it difficult to distinguish ice clouds over snow and sea ice surfaces, so additional tests were added to enhance the confidence in the thermodynamic phase of clouds over the Chukchi Sea. The cloud optical thickness and effective radius retrievals used three distinct bands of the MAS, with a recently developed 1.62- and 2.13-μm-band algorithm being used quite successfully over snow and sea ice surfaces. These results are contrasted with a MODIS-based algorithm that relies on spectral reflectance at 0.87 and 2.13 μm.

Full access
Andrew K. Heidinger, Nicholas Bearson, Michael J. Foster, Yue Li, Steve Wanzong, Steven Ackerman, Robert E. Holz, Steven Platnick, and Kerry Meyer

Abstract

Modern polar-orbiting meteorological satellites provide both imaging and sounding observations simultaneously. Most imagers, however, do not have H2O and CO2 absorption bands and therefore struggle to accurately estimate the height of optically thin cirrus clouds. Sounders provide these needed observations, but at a spatial resolution that is too coarse to resolve many important cloud structures. This paper presents a technique to merge sounder and imager observations with the goal of maintaining the details offered by the imager’s high spatial resolution and the accuracy offered by the sounder’s spectral information. The technique involves deriving cloud temperatures from the sounder observations, interpolating the sounder temperatures to the imager pixels, and using the sounder temperatures as an additional constraint in the imager cloud height optimal estimation approach. This technique is demonstrated using collocated VIIRS and Cross-track Infrared Sounder (CrIS) observations with the impact of the sounder observations validated using coincident CALIPSO/CALIOP cloud heights These comparisons show significant improvement in the cloud heights for optically thin cirrus. The technique should be generally applicable to other imager/sounder pairs.

Full access
Jonathan P. Taylor, Martin D. Glew, James A. Coakley Jr., William R. Tahnk, Steven Platnick, Peter V. Hobbs, and Ronald J. Ferek

Abstract

The influence of anthropogenic aerosols, in the form of ship exhaust effluent, on the microphysics and radiative properties of marine stratocumulus is studied using data gathered from the U.K. Met. Office C-130 and the University of Washington C-131A aircraft during the Monterey Area Ship Track (MAST) experiment in 1994. During the period of MAST, stratocumulus clouds were studied during 11 flights and a wide range of levels of background pollution was observed. The impact of the aerosol emitted from the ships was found to be very dependent on the background cloud microphysical conditions. In clouds of continental influence, the susceptibility of the cloud to further aerosol emissions was low, with a correspondingly weak microphysics and radiation signature in the ship tracks. In clean clouds, changes in droplet concentration of a factor of 2, and reductions in droplet size of up to 50%, were measured. These changes in the microphysics had significant impacts on the cloud radiative forcing. Furthermore, as a result of the cloud droplet size being reduced, in some cases the drizzle was suppressed in the clean clouds, resulting in an increase in liquid water path in the polluted ship track environment. The impact of this combined change in liquid water path and droplet radius was to increase the cloud radiative forcing by up to a factor of 4.

Full access
Galina Wind, Steven Platnick, Michael D. King, Paul A. Hubanks, Michael J. Pavolonis, Andrew K. Heidinger, Ping Yang, and Bryan A. Baum

Abstract

Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the NASA Earth Observing System (EOS) Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that present difficulties for retrieving cloud effective radius using single-layer plane-parallel cloud models. The algorithm uses the MODIS 0.94-μm water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94-μm methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases.

Full access
Michael D. King, W. Paul Menzel, Patrick S. Grant, Jeffrey S. Myers, G. Thomas Arnold, Steven E. Platnick, Liam E. Gumley, Si-Chee Tsay, Christopher C. Moeller, Michael Fitzgerald, Kenneth S. Brown, and Fred G. Osterwisch

Abstract

An airborne scanning spectrometer was developed for measuring reflected solar and emitted thermal radiation in 50 narrowband channels between 0.55 and 14.2 µm. The instrument provides multispectral images of outgoing radiation for purposes of developing and validating algorithms for the remote sensing of cloud, aerosol, water vapor, and surface properties from space. The spectrometer scans a swath width of 37 km, perpendicular to the aircraft flight track, with a 2.5-mrad instantaneous field of view. Images are thereby produced with a spatial resolution of 50 m at nadir from a nominal aircraft altitude of 20 km. Nineteen of the spectral bands correspond closely to comparable bands on the Moderate Resolution Imaging Spectroradiometer (MODIS), a facility instrument being developed for the Earth Observing System to be launched in the late 1990s. This paper describes the optical, mechanical, electrical, and data acquisition system design of the MODIS Airborne Simulator and presents some early results obtained from measurements acquired aboard the National Aeronautics and Space Administration ER-2 aircraft that illustrate the performance and quality of the data produced by this instrument.

Full access