Search Results

You are looking at 11 - 20 of 22 items for

  • Author or Editor: Taikan Oki x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Tomohito J. Yamada
,
Randal D. Koster
,
Shinjiro Kanae
, and
Taikan Oki

Abstract

This study reveals the mathematical structure of a statistical index, Ω, that quantifies similarity among ensemble members in a weather forecast. Previous approaches for quantifying predictability estimate separately the phase and shape characteristics of a forecast ensemble. The diagnostic Ω, on the other hand, characterizes the similarity (across ensemble members) of both aspects together with a simple expression. The diagnostic Ω is thus more mathematically versatile than previous indices.

Full access
Shinta Seto
,
Takuji Kubota
,
Nobuhiro Takahashi
,
Toshio Iguchi
, and
Taikan Oki

Abstract

Seto et al. developed rain/no-rain classification (RNC) methods over land for the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). In this study, the methods are modified for application to other microwave radiometers. The previous methods match TMI observations with TRMM precipitation radar (PR) observations, classify the TMI pixels into rain pixels and no-rain pixels, and then statistically summarize the observed brightness temperature at the no-rain pixels into a land surface brightness temperature database. In the modified methods, the probability distribution of brightness temperature under no-rain conditions is derived from unclassified TMI pixels without the use of PR. A test with the TMI shows that the modified (PR independent) methods are better than the RNC method developed for the Goddard profiling algorithm (GPROF; the standard algorithm for the TMI) while they are slightly poorer than corresponding previous (PR dependent) methods. M2d, one of the PR-independent methods, is applied to observations from the Advanced Microwave Scanning Radiometer for Earth Observing Satellite (AMSR-E), is evaluated for a matchup case with PR, and is evaluated for 1 yr with a rain gauge dataset in Japan. M2d is incorporated into a retrieval algorithm developed by the Global Satellite Mapping of Precipitation project to be applied for the AMSR-E. In latitudes above 30°N, the rain-rate retrieval is compared with a rain gauge dataset by the Global Precipitation Climatology Center. Without a snow mask, a large amount of false rainfall due to snow contamination occurs. Therefore, a simple snow mask using the 23.8-GHz channel is applied and the threshold of the mask is optimized. Between 30° and 60°N, the optimized snow mask forces the miss of an estimated 10% of the total rainfall.

Full access
Kylie J. Park
,
Kei Yoshimura
,
Hyungjun Kim
, and
Taikan Oki

Abstract

Over 150 years of investigations into global terrestrial precipitation are revisited to reveal how researchers estimated annual means from in situ observations before the age of digitization. After introducing early regional efforts to measure precipitation, the pioneering estimates of terrestrial mean precipitation from the late nineteenth and early twentieth centuries are compared to successive estimates, including those using the latest gridded precipitation datasets available. The investigation reveals that the range of the early estimates is comparable to the interannual variation in terrestrial mean precipitation derived from the latest Climatic Research Unit (CRU) dataset. In-depth revisions of the estimates were infrequent up to the 1970s, due in part to difficulty obtaining and maintaining up-to-date datasets with global coverage. This point is illustrated in a “family tree” that identifies the key publications that subsequent authors referenced, sometimes decades after the original publication. Significant efforts to collate global observations facilitated new investigations and improved data exchange, for example, in the International Hydrological Decade (1965–74) and following the establishment of the Global Telecommunication System under the World Weather Watch Programme of the World Meteorological Organization. Also in the 1970s were the first attempts to adjust in situ observations on a global scale to account for gauge undercatch, and this had a noticeable impact on mean annual estimates. There remains no single satisfactory approach to gauge bias adjustment. Echoing the repeated message of past researchers, today’s authors cite poor spatial coverage, temporal inhomogeneity, and inadequate sharing of in situ observations as the key obstacles to obtaining more accurate estimates of terrestrial mean precipitation.

Open access
Qiuhong Tang
,
Huilin Gao
,
Pat Yeh
,
Taikan Oki
,
Fengge Su
, and
Dennis P. Lettenmaier

Abstract

Terrestrial water storage (TWS) is a fundamental component of the water cycle. On a regional scale, measurements of terrestrial water storage change (TWSC) are extremely scarce at any time scale. This study investigates the feasibility of estimating monthly-to-seasonal variations of regional TWSC from modeling and a combination of satellite and in situ surface observations based on water balance computations that use ground-based precipitation observations in both cases. The study area is the Klamath and Sacramento River drainage basins in the western United States (total area of about 110 000 km2). The TWSC from the satellite/surface observation–based estimates is compared with model results and land water storage from the Gravity Recovery and Climate Experiment (GRACE) data. The results show that long-term evapotranspiration estimates and runoff measurements generally balance with observed precipitation, suggesting that the evapotranspiration estimates have relatively small bias for long averaging times. Observations show that storage change in water management reservoirs is about 12% of the seasonal amplitude of the TWSC cycle, but it can be up to 30% at the subbasin scale. Comparing with predevelopment conditions, the satellite/surface observation–based estimates show larger evapotranspiration and smaller runoff than do modeling estimates, suggesting extensive anthropogenic alteration of TWSC in the study area. Comparison of satellite/surface observation–based and GRACE TWSC shows that the seasonal cycle of terrestrial water storage is substantially underestimated by GRACE.

Full access
Paul A. Dirmeyer
,
Xiang Gao
,
Mei Zhao
,
Zhichang Guo
,
Taikan Oki
, and
Naota Hanasaki

Quantification of sources and sinks of carbon at global and regional scales requires not only a good description of the land sources and sinks of carbon, but also of the synoptic and mesoscale meteorology. An experiment was performed in Les Landes, southwest France, during May–June 2005, to determine the variability in concentration gradients and fluxes of CO2 The CarboEurope Regional Experiment Strategy (CERES; see also http://carboregional.mediasfrance.org/index) aimed to produce aggregated estimates of the carbon balance of a region that can be meaningfully compared to those obtained from the smallest downscaled information of atmospheric measurements and continental-scale inversions. We deployed several aircraft to sample the CO2 concentration and fluxes over the whole area, while fixed stations observed the fluxes and concentrations at high accuracy. Several (mesoscale) meteorological modeling tools were used to plan the experiment and flight patterns.

Results show that at regional scale the relation between profiles and fluxes is not obvious, and is strongly influenced by airmass history and mesoscale flow patterns. In particular, we show from an analysis of data for a single day that taking either the concentration at several locations as representative of local fluxes or taking the flux measurements at those sites as representative of larger regions would lead to incorrect conclusions about the distribution of sources and sinks of carbon. Joint consideration of the synoptic and regional flow, fluxes, and land surface is required for a correct interpretation. This calls for an experimental and modeling strategy that takes into account the large spatial gradients in concentrations and the variability in sources and sinks that arise from different land use types. We briefly describe how such an analysis can be performed and evaluate the usefulness of the data for planning of future networks or longer campaigns with reduced experimental efforts.

Full access
Paul A. Dirmeyer
,
Xiang Gao
,
Mei Zhao
,
Zhichang Guo
,
Taikan Oki
, and
Naota Hanasaki
Full access
Yadu Pokhrel
,
Naota Hanasaki
,
Sujan Koirala
,
Jaeil Cho
,
Pat J.-F. Yeh
,
Hyungjun Kim
,
Shinjiro Kanae
, and
Taikan Oki

Abstract

Anthropogenic activities have been significantly perturbing global freshwater flows and groundwater reserves. Despite numerous advances in the development of land surface models (LSMs) and global terrestrial hydrological models (GHMs), relatively few studies have attempted to simulate the impacts of anthropogenic activities on the terrestrial water cycle using the framework of LSMs. From the comparison of simulated terrestrial water storage with the Gravity Recovery and Climate Experiment (GRACE) satellite observations it is found that a process-based LSM, the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO), outperforms the bucket-model-based GHM called H08 in simulating hydrologic variables, particularly in water-limited regions. Therefore, the water regulation modules of H08 are incorporated into MATSIRO. Further, a new irrigation scheme based on the soil moisture deficit is developed. Incorporation of anthropogenic water regulation modules significantly improves river discharge simulation in the heavily regulated global river basins. Simulated irrigation water withdrawal for the year 2000 (2462 km3 yr−1) agrees well with the estimates provided by the Food and Agriculture Organization (FAO). Results indicate that irrigation changes surface energy balance, causing a maximum increase of ~50 W m−2 in latent heat flux averaged over June–August. Moreover, unsustainable anthropogenic water use in 2000 is estimated to be ~450 km3 yr−1, which corresponds well with documented records of groundwater overdraft, representing an encouraging improvement over the previous modeling studies. Globally, unsustainable water use accounts for ~40% of blue water used for irrigation. The representation of anthropogenic activities in MATSIRO makes the model a suitable tool for assessing potential anthropogenic impacts on global water resources and hydrology.

Full access
Xiaogang He
,
Hyungjun Kim
,
Pierre-Emmanuel Kirstetter
,
Kei Yoshimura
,
Eun-Chul Chang
,
Craig R. Ferguson
,
Jessica M. Erlingis
,
Yang Hong
, and
Taikan Oki

Abstract

As a basic form of climate patterns, the diurnal cycle of precipitation (DCP) can provide a key test bed for model reliability and development. In this study, the DCP over West Africa was simulated by the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM) during the monsoon season (April–September) of 2005. Three convective parameterization schemes (CPSs), single-layer simplified Arakawa–Schubert (SAS), multilayer relaxed Arakawa–Schubert (RAS), and new Kain–Fritsch (KF2), were evaluated at two horizontal resolutions (20 and 10 km). The Benin mesoscale site was singled out for additional investigation of resolution effects. Harmonic analysis was used to characterize the phase and amplitude of the DCP. Compared to satellite observations, the overall spatial distributions of amplitude were well captured at regional scales. The RSM properly reproduced the observed late afternoon peak over land and the early morning peak over ocean. Nevertheless, the peak time was early. Sensitivity experiments of CPSs showed similar spatial patterns of rainfall totals among the schemes; CPSs mainly affected the amplitude of the diurnal cycle, while the phase was not significantly shifted. There is no clear optimal pairing of resolution and CPS. However, it is found that the sensitivity of DCP to CPSs and resolution varies with the partitioning between convective and stratiform, which implies that appropriate partitioning needs to be considered for future development of CPSs in global or regional climate models.

Full access
Efi Foufoula-Georgiou
,
Clement Guilloteau
,
Phu Nguyen
,
Amir Aghakouchak
,
Kuo-Lin Hsu
,
Antonio Busalacchi
,
F. Joseph Turk
,
Christa Peters-Lidard
,
Taikan Oki
,
Qingyun Duan
,
Witold Krajewski
,
Remko Uijlenhoet
,
Ana Barros
,
Pierre Kirstetter
,
William Logan
,
Terri Hogue
,
Hoshin Gupta
, and
Vincenzo Levizzani
Free access
Randal D. Koster
,
Y. C. Sud
,
Zhichang Guo
,
Paul A. Dirmeyer
,
Gordon Bonan
,
Keith W. Oleson
,
Edmond Chan
,
Diana Verseghy
,
Peter Cox
,
Harvey Davies
,
Eva Kowalczyk
,
C. T. Gordon
,
Shinjiro Kanae
,
David Lawrence
,
Ping Liu
,
David Mocko
,
Cheng-Hsuan Lu
,
Ken Mitchell
,
Sergey Malyshev
,
Bryant McAvaney
,
Taikan Oki
,
Tomohito Yamada
,
Andrew Pitman
,
Christopher M. Taylor
,
Ratko Vasic
, and
Yongkang Xue

Abstract

The Global Land–Atmosphere Coupling Experiment (GLACE) is a model intercomparison study focusing on a typically neglected yet critical element of numerical weather and climate modeling: land–atmosphere coupling strength, or the degree to which anomalies in land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric processes. The 12 AGCM groups participating in GLACE performed a series of simple numerical experiments that allow the objective quantification of this element for boreal summer. The derived coupling strengths vary widely. Some similarity, however, is found in the spatial patterns generated by the models, with enough similarity to pinpoint multimodel “hot spots” of land–atmosphere coupling. For boreal summer, such hot spots for precipitation and temperature are found over large regions of Africa, central North America, and India; a hot spot for temperature is also found over eastern China. The design of the GLACE simulations are described in full detail so that any interested modeling group can repeat them easily and thereby place their model’s coupling strength within the broad range of those documented here.

Full access