Search Results

You are looking at 11 - 17 of 17 items for :

  • Author or Editor: Todd D. Ringler x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Todd D. Ringler
,
Doug Jacobsen
,
Max Gunzburger
,
Lili Ju
,
Michael Duda
, and
William Skamarock

Abstract

The ability to solve the global shallow-water equations with a conforming, variable-resolution mesh is evaluated using standard shallow-water test cases. While the long-term motivation for this study is the creation of a global climate modeling framework capable of resolving different spatial and temporal scales in different regions, the process begins with an analysis of the shallow-water system in order to better understand the strengths and weaknesses of the approach developed herein. The multiresolution meshes are spherical centroidal Voronoi tessellations where a single, user-supplied density function determines the region(s) of fine- and coarse-mesh resolution. The shallow-water system is explored with a suite of meshes ranging from quasi-uniform resolution meshes, where the grid spacing is globally uniform, to highly variable resolution meshes, where the grid spacing varies by a factor of 16 between the fine and coarse regions. The potential vorticity is found to be conserved to within machine precision and the total available energy is conserved to within a time-truncation error. This result holds for the full suite of meshes, ranging from quasi-uniform resolution and highly variable resolution meshes. Based on shallow-water test cases 2 and 5, the primary conclusion of this study is that solution error is controlled primarily by the grid resolution in the coarsest part of the model domain. This conclusion is consistent with results obtained by others. When these variable-resolution meshes are used for the simulation of an unstable zonal jet, the core features of the growing instability are found to be largely unchanged as the variation in the mesh resolution increases. The main differences between the simulations occur outside the region of mesh refinement and these differences are attributed to the additional truncation error that accompanies increases in grid spacing. Overall, the results demonstrate support for this approach as a path toward multiresolution climate system modeling.

Full access
Phillip J. Wolfram
,
Todd D. Ringler
,
Mathew E. Maltrud
,
Douglas W. Jacobsen
, and
Mark R. Petersen

Abstract

Isopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon model resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(105) m2 s−1 in the region of western boundary current separation to O(103) m2 s−1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. A reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.

Full access
Travis A. O'Brien
,
Fuyu Li
,
William D. Collins
,
Sara A. Rauscher
,
Todd D. Ringler
,
Mark Taylor
,
Samson M. Hagos
, and
L. Ruby Leung

Abstract

Observations of robust scaling behavior in clouds and precipitation are used to derive constraints on how partitioning of precipitation should change with model resolution. Analysis indicates that 90%–99% of stratiform precipitation should occur in clouds that are resolvable by contemporary climate models (e.g., with 200-km or finer grid spacing). Furthermore, this resolved fraction of stratiform precipitation should increase sharply with resolution, such that effectively all stratiform precipitation should be resolvable above scales of ~50 km. It is shown that the Community Atmosphere Model (CAM) and the Weather Research and Forecasting model (WRF) also exhibit the robust cloud and precipitation scaling behavior that is present in observations, yet the resolved fraction of stratiform precipitation actually decreases with increasing model resolution. A suite of experiments with multiple dynamical cores provides strong evidence that this “scale-incognizant” behavior originates in one of the CAM4 parameterizations. An additional set of sensitivity experiments rules out both convection parameterizations, and by a process of elimination these results implicate the stratiform cloud and precipitation parameterization. Tests with the CAM5 physics package show improvements in the resolution dependence of resolved cloud fraction and resolved stratiform precipitation fraction.

Full access
William C. Skamarock
,
Joseph B. Klemp
,
Michael G. Duda
,
Laura D. Fowler
,
Sang-Hun Park
, and
Todd D. Ringler

Abstract

The formulation of a fully compressible nonhydrostatic atmospheric model called the Model for Prediction Across Scales–Atmosphere (MPAS-A) is described. The solver is discretized using centroidal Voronoi meshes and a C-grid staggering of the prognostic variables, and it incorporates a split-explicit time-integration technique used in many existing nonhydrostatic meso- and cloud-scale models. MPAS can be applied to the globe, over limited areas of the globe, and on Cartesian planes. The Voronoi meshes are unstructured grids that permit variable horizontal resolution. These meshes allow for applications beyond uniform-resolution NWP and climate prediction, in particular allowing embedded high-resolution regions to be used for regional NWP and regional climate applications. The rationales for aspects of this formulation are discussed, and results from tests for nonhydrostatic flows on Cartesian planes and for large-scale flow on the sphere are presented. The results indicate that the solver is as accurate as existing nonhydrostatic solvers for nonhydrostatic-scale flows, and has accuracy comparable to existing global models using icosahedral (hexagonal) meshes for large-scale flows in idealized tests. Preliminary full-physics forecast results indicate that the solver formulation is robust and that the variable-resolution-mesh solutions are well resolved and exhibit no obvious problems in the mesh-transition zones.

Full access
Koichi Sakaguchi
,
L. Ruby Leung
,
Chun Zhao
,
Qing Yang
,
Jian Lu
,
Samson Hagos
,
Sara A. Rauscher
,
Li Dong
,
Todd D. Ringler
, and
Peter H. Lauritzen

Abstract

This study presents a diagnosis of a multiresolution approach using the Model for Prediction Across Scales–Atmosphere (MPAS-A) for simulating regional climate. Four Atmospheric Model Intercomparison Project (AMIP) experiments were conducted for 1999–2009. In the first two experiments, MPAS-A was configured using global quasi-uniform grids at 120- and 30-km grid spacing. In the other two experiments, MPAS-A was configured using variable-resolution (VR) mesh with local refinement at 30 km over North America and South America and embedded in a quasi-uniform domain at 120 km elsewhere. Precipitation and related fields in the four simulations are examined to determine how well the VRs reproduce the features simulated by the globally high-resolution model in the refined domain. In previous analyses of idealized aquaplanet simulations, characteristics of the global high-resolution simulation in moist processes developed only near the boundary of the refined region. In contrast, AMIP simulations with VR grids can reproduce high-resolution characteristics across the refined domain, particularly in South America. This finding indicates the importance of finely resolved lower boundary forcings such as topography and surface heterogeneity for regional climate and demonstrates the ability of the MPAS-A VR to replicate the large-scale moisture transport as simulated in the quasi-uniform high-resolution model. Upscale effects from the high-resolution regions on a large-scale circulation outside the refined domain are observed, but the effects are mainly limited to northeastern Asia during the warm season. Together, the results support the multiresolution approach as a computationally efficient and physically consistent method for modeling regional climate.

Full access
Xiaoyan Jiang
,
Sara A. Rauscher
,
Todd D. Ringler
,
David M. Lawrence
,
A. Park Williams
,
Craig D. Allen
,
Allison L. Steiner
,
D. Michael Cai
, and
Nate G. McDowell

Abstract

Rapid and broad-scale forest mortality associated with recent droughts, rising temperature, and insect outbreaks has been observed over western North America (NA). Climate models project additional future warming and increasing drought and water stress for this region. To assess future potential changes in vegetation distributions in western NA, the Community Earth System Model (CESM) coupled with its Dynamic Global Vegetation Model (DGVM) was used under the future A2 emissions scenario. To better span uncertainties in future climate, eight sea surface temperature (SST) projections provided by phase 3 of the Coupled Model Intercomparison Project (CMIP3) were employed as boundary conditions. There is a broad consensus among the simulations, despite differences in the simulated climate trajectories across the ensemble, that about half of the needleleaf evergreen tree coverage (from 24% to 11%) will disappear, coincident with a 14% (from 11% to 25%) increase in shrubs and grasses by the end of the twenty-first century in western NA, with most of the change occurring over the latter half of the twenty-first century. The net impact is a ~6 GtC or about 50% decrease in projected ecosystem carbon storage in this region. The findings suggest a potential for a widespread shift from tree-dominated landscapes to shrub and grass-dominated landscapes in western NA because of future warming and consequent increases in water deficits. These results highlight the need for improved process-based understanding of vegetation dynamics, particularly including mortality and the subsequent incorporation of these mechanisms into earth system models to better quantify the vulnerability of western NA forests under climate change.

Full access
Hyein Jeong
,
Xylar S. Asay-Davis
,
Adrian K. Turner
,
Darin S. Comeau
,
Stephen F. Price
,
Ryan P. Abernathey
,
Milena Veneziani
,
Mark R. Petersen
,
Matthew J. Hoffman
,
Matthew R. Mazloff
, and
Todd D. Ringler

Abstract

The Southern Ocean overturning circulation is driven by winds, heat fluxes, and freshwater sources. Among these sources of freshwater, Antarctic sea ice formation and melting play the dominant role. Even though ice-shelf melt is relatively small in magnitude, it is located close to regions of convection, where it may influence dense water formation. Here, we explore the impacts of ice-shelf melting on Southern Ocean water-mass transformation (WMT) using simulations from the Energy Exascale Earth System Model (E3SM) both with and without the explicit representation of melt fluxes from beneath Antarctic ice shelves. We find that ice-shelf melting enhances transformation of Upper Circumpolar Deep Water, converting it to lower density values. While the overall differences in Southern Ocean WMT between the two simulations are moderate, freshwater fluxes produced by ice-shelf melting have a further, indirect impact on the Southern Ocean overturning circulation through their interaction with sea ice formation and melting, which also cause considerable upwelling. We further find that surface freshening and cooling by ice-shelf melting cause increased Antarctic sea ice production and stronger density stratification near the Antarctic coast. In addition, ice-shelf melting causes decreasing air temperature, which may be directly related to sea ice expansion. The increased stratification reduces vertical heat transport from the deeper ocean. Although the addition of ice-shelf melting processes leads to no significant changes in Southern Ocean WMT, the simulations and analysis conducted here point to a relationship between increased Antarctic ice-shelf melting and the increased role of sea ice in Southern Ocean overturning.

Open access