Search Results

You are looking at 11 - 13 of 13 items for

  • Author or Editor: Worth D. Nowlin Jr. x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
R. Dale Pillsbury, Thomas Whitworth III, Worth D. Nowlin Jr., and Frank Sciremammano Jr.


Current and temperature records from 10 meters on six year-long moorings deployed during February 1975 in Drake Passage are examined and discussed in the context of hydrographic data from that area. The mean flow directions are consistent with those from geopotential anomaly charts, showing a northward flow in the central passage and eastward through-passage flow in the south and north. Directly measured vertical shear below 1000 m is remarkably uniform with depth in the central passage. Periods of high shear correspond to periods of high speed and are associated with lateral shifts in the velocity cores imbedded in the Antarctic Circumpolar Current at Drake Passage. Fluctuations in temperature and current are highly correlated in the vertical. Although meters near 2700 m separated by 80 km or more show only a few significant horizontal correlations for record-length statistics, there appear to be coherent fluctuations in the central passage during winter. Temperature and speed variability suggest that there are distinct thermal and kinematic regimes in Drake Passage.

Full access
Worth D. Nowlin Jr., Melbourne Briscoe, Neville Smith, Michael J. McPhaden, Dean Roemmich, Piers Chapman, and J. Frederick Grassle

The Global Ocean Observing System (GOOS) was initiated in the early 1990s with sponsorship by the Intergovernmental Oceanographic Commission, the International Council for Science, the United Nations Environment Programme, and the World Meteorological Organization. Its objective is to design and assist with the implementation of a sustained, integrated, multidisciplinary ocean observing system focused on the production and delivery of data and products to a wide variety of users. The initial design for the GOOS is nearing completion, and implementation has begun.

The initial task in developing a sustained observing system is to identify the requirements of users for sustained data and products. Once such needs are known, the next task is to examine observing system elements that already exist; many necessary elements will be found to exist. The next tasks are to identify and integrate the useful elements into an efficient and effective system, while removing the unneeded elements, and to develop and implement effective data management activities. Moreover, the system must be augmented with new elements because some requirements cannot be met with existing elements and because of technological advances.

Our key objective is to discuss the mechanism whereby new candidate observing system elements are transformed from development status into elements of the sustained system. Candidate systems normally will pass through many different phases on the path from idea and concept to a mature, robust technique. These stages are discussed and examples are given:

  1. Development of an observational/analysis technique within the ocean community.
  2. Community acceptance of the methodology gained through experience within pilot projects to demonstrate the utility of the methods and data.
  3. Pre-operational use of the methods and data by researchers, application groups, and other end users, to ensure proper integration within the global system and to ensure that the intended augmentation (and perhaps phased withdrawal of an old technique) does not have any negative impact on the integrity of the GOOS data set and its dependent products.
  4. Incorporation of the methods and data into an operational framework with sustained support and sustained use to meet societal objectives.

Full access
Worth D. Nowlin Jr., Neville Smith, George Needler, Peter K. Taylor, Robert Weller, Ray Schmitt, Liliane Merlivat, Alain Vézina, Arthur Alexiou, Michael McPhaden, and Massaaki Wakatsuchi

Designs and implementation are proceeding for a Global Ocean Observing System (GOOS) and a Global Climate Observing System (GCOS). The initial design for the ocean component of the GCOS, which is also the climate module of the GOOS, was completed in 1995 by the Ocean Observing System Development Panel (OOSDP). This design for an ocean observing system for climate aims to provide ocean observations leading to gridded products, analyses, forecasts, indexes, assessments, and other items needed to detect, monitor, understand, and predict climate variations and change. A summary of the OOSDP report is presented here, beginning with the rationale for such a system and the series of specific goals and subgoals used to focus the design. The instruments, platforms, transmission systems, or processing required to observe the climate variables or quantifiable aspects of the climate system to meet these subgoals are identified. These observing system elements are divided into three categories: 1) elements of existing operational systems, 2) those that should be added now to complete the initial observing system, or 3) elements perhaps not now readily attainable but that should be added to the system at the earliest feasible time. Future research and development likely needed for further development of the system are also identified in the report. The elements needed for each subgoal are ranked as to feasibility (i.e., routine, systematic, timely, and cost-effective characteristics) versus their impact on attaining the subgoal. Priorities among the various subgoals are presented based on the panel's perception of where the immediate and important issues lie. This then provides the basis for an incremental approach to implementation, leading to a coherent conceptual design.

Full access