Search Results

You are looking at 11 - 20 of 42 items for

  • Author or Editor: Yang Lu x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Hui Li, Panmao Zhai, Yang Chen, and Er Lu

Abstract

In this study, cases of the East Asia–Pacific (EAP) teleconnection pattern not responsible for persistent precipitation processes in the Yangtze River valley (YRV) have been investigated. The results suggest that such a type of EAP pattern has some linkage with persistent precipitation processes in south China (SC) with the following properties: 1) in response to the negative SSTAs and anticyclone near the Philippines, the meridional energy propagates from the low latitudes over the north of the Philippines; 2) the western Pacific subtropical high (WPSH) then intensifies and extends westward; 3) a meridional triple structure of the EAP teleconnection pattern is established; 4) at the same time, the cyclonic circulation over northeastern China introduces cold and dry air to the lower latitudes, merging with the water vapor into SC and leading to heavy precipitation from the fringe of the WPSH, the South China Sea, and the Bay of Bengal and the combination of systems persists for at least 3 days, leading to the persistent precipitation processes in SC; and 5) compared with the EAP teleconnection responsible for the precipitation in YRV, the positions of the three centers in the mid- and low latitudes are more southerly located than the YRV EAP centers. Further study indicates that the ocean surface heat conditions in the areas near the Philippines seem to be important in affecting the EAP teleconnection pattern for persistent precipitation processes in SC. Finally, all of the cases with persistent precipitation in SC during 1961–2010 linked with the EAP pattern have been investigated; the results are consistent with the above conclusions.

Full access
Jun Yang, Zhiqing Zhang, Caiying Wei, Feng Lu, and Qiang Guo

Abstract

China is developing a new generation of geostationary meteorological satellites called Fengyun-4 (FY-4), which is planned for launch beginning in 2016. Following upon the current FY-2 satellite series, FY-4 will carry four new instruments: the Advanced Geosynchronous Radiation Imager (AGRI), the Geosynchronous Interferometric Infrared Sounder (GIIRS), the Lightning Mapping Imager (LMI), and the Space Environment Package (SEP). The first satellite of the FY-4 series launched on 11 December 2016 is experimental, and the following four or more satellites will be operational.

The main objectives of the FY-4 series are to monitor rapidly changing weather systems and to improve warning and forecasting capabilities. The FY-4 measurements are aimed at accomplishing 1) high temporal and spatial resolution imaging in 14 spectral bands from the visible, near-infrared, and infrared (IR) spectral regions; 2) lightning imaging; and 3) high-spectral-resolution IR sounding observations over China and adjacent regions. FY-4 will also enhance the space weather monitoring and warning with SEP. Current products from FY-2 will be improved by FY-4, and a number of new products will also be introduced. FY-4’s sounding and imaging data will be used to improve applications in a wide range of ocean, land, and atmosphere monitoring plus forecasting extreme weather (especially typhoons and thunderstorms); overall, FY-4 will contribute to more accurate understanding and forecasting of China’s weather, climate, environment, and natural disasters. This new generation of Chinese geostationary weather satellites is being developed in parallel with the new generation of geostationary meteorological satellite systems from the international community of satellite providers and is intended to be an important contribution to the global observing system.

Full access
Shan He, Song Yang, Mengmeng Lu, and Zhenning Li

Abstract

The Afro-Eurasian intermediate-frequency atmospheric teleconnection conveys meteorological signals zonally, leads to various atmospheric variations, and causes extreme events along its path. This study, aimed at demonstrating the characteristics of the teleconnection, reveals that the teleconnection accounts for nearly half of the atmospheric variability and significantly influences different meteorological fields. With the propagation of signals associated with the teleconnection, local weather varies from prolonged dry and warm days to extended wet and cold days. El Niño–Southern Oscillation (ENSO) modulates the interannual variation of the teleconnection: it becomes more active and its downstream pattern shifts southward during El Niño events. Two responsible mechanisms are proposed for the ENSO modulation: the eddy-to-eddy interaction that leads to the change in the activeness of the teleconnection and the waveguide effect that accounts for the shift of the teleconnection. First, the El Niño–related Atlantic anomalies of the Rossby wave train and storm track amplify the Atlantic disturbances of the intermediate frequency and thus the activeness of the teleconnection. Second, during El Niño years, the East Asian jet stream shifts southward, resulting in the southward shifts of the downstream waveguide effect and thus the downstream pattern. This study also demonstrates that when investigating an atmospheric mode or its impacts, the signals of different time scales should be separated and the cross-frequency interactive systems necessitate examinations.

Open access
Mengmeng Lu, Zhiming Kuang, Song Yang, Zhenning Li, and Hanjie Fan

Abstract

Eurasian snow, one of the most important factors that influence the Asian monsoons, has long been viewed as a useful predictor for seasonal monsoon prediction. In this study, observations and model simulations are used to demonstrate a bridging role of the winter snow anomaly over northern China and southern Mongolia (NCSM) in the relationship between the East Asian winter monsoon (EAWM) and the East Asian summer monsoon (EASM). Enhanced snow in NCSM results in local surface and tropospheric cooling, strengthening the EAWM through cold-air intrusion induced by northerly wind anomalies. In turn, the stronger EAWM provides a favorable condition for enhanced snowfall over East Asia to the south, indicating an active snow–EAWM interaction. The continental cooling could be maintained until summer due to the memory effect of snowmelt and moistening as well as the snow–monsoon interaction in the spring, causing changes in the meridional temperature gradient and associated upper-level westerlies in the summer. The interaction between the strengthened westerlies over the northern Tibetan Plateau and the topography of the plateau could lead to anomalous downstream convergence and compensating divergence to the south. Therefore, anomalous cyclonic circulation and increased rainfall occur over northeastern China and the Korean Peninsula, but anticyclonic circulation and decreased rainfall appear over the subtropical East Asia–Pacific region. Moreover, limited analysis shows that, compared to sea surface temperature feedback, the direct impact of snow anomaly on the EAWM–EASM connection seems more important.

Open access
Mengmeng Lu, Song Yang, Junbin Wang, Yuting Wu, and Xiaolong Jia

Abstract

The thermal effect of the entire Tibetan Plateau (TP) tends to strengthen the South Asian summer monsoon (SASM); however, how does this monsoon component respond to the thermal conditions of different TP domains? How do the thermal conditions of the entire TP influence other monsoons, including the East Asian summer monsoon (EASM) and the Southeast Asian summer monsoon (SEASM)? These questions are addressed by conducting an experiment with the CESM, which is forced by reducing the surface albedo over the plateau by half, from a TP-averaged 0.20 to 0.10, from May to September, and similar experiments for different TP domains. Both observational and model results show that the entire TP heating intensifies the large-scale Asian monsoon, the SASM, and the EASM but surprisingly weakens the SEASM. It is also surprising that the TP heating exerts a stronger effect on the EASM than on the SASM. The southern TP (south of 35°N) does not show the strongest impact on the SASM in comparison with other TP domains, and it exerts the weakest impact on the EASM, which is most strongly influenced by the thermal effect of the eastern (east of 90°E) and northern TP. The western TP weakens the SEASM (as do the other domains), and it strengthens other monsoon components. The thermal conditions of the southern and eastern TP are accompanied by signals of tropical atmospheric response at relatively broader spatial scales, whereas those of the northern TP more apparently lead to a significant wave train extending eastward from the TP to western Eurasia over the higher latitudes.

Open access
Ji-Qin Zhong, Bing Lu, Wei Wang, Cheng-Cheng Huang, and Yang Yang

Abstract

In this study, the causes of the underestimated diurnal 2-m temperature range and the overestimated 2-m specific humidity in the winter of northern China in the Rapid-Refresh Multiscale Analysis and Prediction System–Short Term (RMAPS-ST) are investigated. Three simulations based on RMAPS-ST are conducted from 1 November 2016 to 28 February 2017. Further analyses show that the partitioning of surface upward sensible heat fluxes and downward ground heat fluxes might be the main contributing factor to the 2-m temperature forecast bias. In this study, two simulations are conducted to examine the effect of soil moisture initialization and soil hydraulic property on the 2-m temperature and 2-m specific humidity forecasts. First, the High-Resolution Land Data Assimilation System (HRLDAS) is used to provide an alternative soil moisture initialization. The results show that the drier soil moisture could lead to noticeable change in energy partitioning at the land surface, which in turn results in improved prediction of the diurnal 2-m temperature range, although it also enlarges the 2-m specific humidity bias in some parts of the domain. Second, a soil texture dataset developed by Beijing Normal University and the revised hydraulic parameters are applied to provide a more detailed description of soil properties, which could further improve the 2-m specific humidity bias. In summary, the combination of using optimized soil moisture initialization, an updated soil map, and revised soil hydraulic parameters can help improve the 2-m temperature and 2-m specific humidity prediction in RMAPS-ST.

Free access
Sijia Lou, Yang Yang, Hailong Wang, Jian Lu, Steven J. Smith, Fukai Liu, and Philip J. Rasch

ABSTRACT

El Niño–Southern Oscillation (ENSO) is the leading mode of Earth’s climate variability at interannual time scales with profound ecological and societal impacts, and it is projected to intensify in many climate models as the climate warms under the forcing of increasing CO2 concentration. Since the preindustrial era, black carbon (BC) emissions have substantially increased in the Northern Hemisphere. But how BC aerosol forcing may influence the occurrence of the extreme ENSO events has rarely been investigated. In this study, using simulations of a global climate model, we show that increases in BC emissions from both the midlatitudes and Arctic weaken latitudinal temperature gradients and northward heat transport, decrease tropical energy divergence, and increase sea surface temperature over the tropical oceans, with a surprising consequential increase in the frequency of extreme ENSO events. A corollary of this study is that reducing BC emissions might serve to mitigate the possible increasing frequency of extreme ENSO events under greenhouse warming, if the modeling result can be translated into the climate in reality.

Open access
Chang Cao, Yichen Yang, Yang Lu, Natalie Schultze, Pingyue Gu, Qi Zhou, Jiaping Xu, and Xuhui Lee

Abstract

Heat stress caused by high air temperature and high humidity is a serious health concern for urban residents. Mobile measurement of these two parameters can complement weather station observations because of its ability to capture data at fine spatial scales and in places where people live and work. In this paper, we describe a smart temperature and humidity sensor (Smart-T) for use on bicycles to characterize intracity variations in human thermal conditions. The sensor has several key characteristics of internet of things (IoT) technology, including lightweight, low cost, low power consumption, ability to communicate and geolocate the data (via the cyclist’s smartphone), and the potential to be deployed in large quantities. The sensor has a reproducibility of 0.03°–0.05°C for temperature and of 0.18%–0.33% for relative humidity (one standard deviation of variation among multiple units). The time constant with a complete radiation shelter and moving at a normal cycling speed is 9.7 and 18.5 s for temperature and humidity, respectively, corresponding to a spatial resolution of 40 and 70 m. Measurements were made with the sensor on street transects in Nanjing, China. Results show that increasing vegetation fraction causes reduction in both air temperature and absolute humidity and that increasing impervious surface fraction has the opposite effect.

Restricted access
Chaohua Dong, Jun Yang, Wenjian Zhang, Zhongdong Yang, Naimeng Lu, Jinming Shi, Peng Zhang, Yujie Liu, and Bin Cai

FengYun-3A (FY-3A), the first satellite in the second generation of the Chinese polar-orbiting meteorological satellites, was launched at Taiyuan, China, launching center on 27 May 2008. Equipped with both sounding and imaging payloads, enabling more powerful observations than the first generation of the FY-1 series, FY-3A carries 11 instruments. Two of them are the same as those on FY-1C/D, while the others, whose spectral bands cover violet, visible, near-infrared, infrared, and microwave spectral regions, are all newly developed. FY-3A instruments can be used to detect and study weather, clouds, radiation, climate, atmosphere, land, ocean, and other environmental features. FY-3A check out took about 5 months following its launch; FY-3A has been operational since January 2009. The plan for the future FY-3 series is to operate two polar-orbiting spacecraft—one in the morning and the other in the afternoon orbit—with different payloads for each spacecraft. This orbit configuration will be further coordinated with the World Meteorological Organization (WMO). One low-inclination orbit spacecraft is under consideration for radar and passive microwave precipitation measurement missions. Details are under discussion and yet to be determined. An overview of the first launch, FY-3A (the second generation of the Chinese meteorological satellites), and its imaging and sounding capabilities and potential applications are given in this paper.

Full access
Zhihua He, Long Yang, Fuqiang Tian, Guangheng Ni, Aizhong Hou, and Hui Lu

Abstract

The aim of this study is to evaluate the accuracy of daily rainfall estimates based on the GPM level-3 final product derived from the IMERG algorithm (abbreviated as IMERG) and TRMM 3B42, version 7 (abbreviated as 3B42), in the upper Mekong River basin, a mountainous region in southwestern China. High-density rain gauges provide exceptional resources for ground validation of satellite rainfall estimates over this region. The performance of the two satellite rainfall products is evaluated during two rainy seasons (May–October) over the period 2014–15, as well as their applications in hydrological simulations. Results indicate that 1) IMERG systematically reduces the bias value in rainfall estimates at the gridbox scale and presents a greater ability to capture rainfall variability at the local domain scale compared with 3B42; 2) IMERG improves the ability to capture rain events with moderate intensities and presents higher capability in detecting occurrences of extreme rain events, but significantly overestimates the amounts of these extreme events; and 3) IMERG generally produces comparable daily streamflow simulations to 3B42 and tends to outperform 3B42 in driving hydrological simulations when calibrating model parameters using each rainfall input. This study provides an early evaluation of the IMERG rainfall product over a mountainous region. The findings indicate the potential of the IMERG product in overestimating extreme rain events, which could serve as the basis for further improvement of IMERG rainfall retrieval algorithms. The hydrological evaluations described here could shed light on the emerging application of retrospectively generated IMERG products back to the TRMM era.

Full access