Search Results

You are looking at 21 - 26 of 26 items for :

  • Author or Editor: Alexey Fedorov x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Ulla K. Heede
,
Alexey V. Fedorov
, and
Natalie J. Burls

Abstract

Different oceanic and atmospheric mechanisms have been proposed to describe the response of the tropical Pacific to global warming, yet large uncertainties persist on their relative importance and potential interaction. Here, we use idealized experiments forced with a wide range of both abrupt and gradual CO2 increases in a coupled climate model (CESM) together with a simplified box model to explore the interaction between, and time scales of, different mechanisms driving Walker circulation changes. We find a robust transient response to CO2 forcing across all simulations, lasting between 20 and 100 years, depending on how abruptly the system is perturbed. This initial response is characterized by the strengthening of the Indo-Pacific zonal SST gradient and a westward shift of the Walker cell. In contrast, the equilibrium response, emerging after 50–100 years, is characterized by a warmer cold tongue, reduced zonal winds, and a weaker Walker cell. The magnitude of the equilibrium response in the fully coupled model is set primarily by enhanced extratropical warming and weaker oceanic subtropical cells, reducing the supply of cold water to equatorial upwelling. In contrast, in the slab ocean simulations, the weakening of the Walker cell is more modest and driven by differential evaporative cooling along the equator. The “weaker Walker” mechanism implied by atmospheric energetics is also observed for the midtroposphere vertical velocity, but its surface manifestation is not robust. Correctly diagnosing the balance between these transient and equilibrium responses will improve understanding of ongoing and future climate change in the tropical Pacific.

Free access
Yu Liang
,
Alexey V. Fedorov
,
Vladimir Zeitlin
, and
Patrick Haertel

Abstract

We study the adjustment of the tropical atmosphere to localized surface heating using a Lagrangian atmospheric model (LAM) that simulates a realistic Madden–Julian oscillation (MJO)—the dominant, eastward-propagating mode of tropical intraseasonal variability modulating atmospheric convection. Idealized warm sea surface temperature (SST) anomalies of different aspect ratios and magnitudes are imposed in the equatorial Indian Ocean during MJO-neutral conditions and then maintained for 15 days. The experiments then continue for several more months. Throughout these experiments, we observe a robust generation of an MJO event, evident in precipitation, velocity, temperature, and moisture fields, which becomes a key element of atmospheric adjustment along with the expected Kelvin and Rossby waves. The MJO circulation pattern gradually builds up during the first week, and then starts to propagate eastward at a speed of 5–7 m s−1. The upper-level quadrupole circulation characteristic of the MJO becomes evident around day 14, with two anticyclonic gyres generated by the Gill-type response to convective heating and two cyclonic gyres forced by the excited Kelvin waves and extratropical Rossby wave trains. A moisture budget analysis shows that the eastward propagation of the MJO is controlled largely by the anomalous advection of moisture and by the residual between anomalous moisture accumulation due to converging winds and precipitation. The initial MJO event is followed by successive secondary events, maintaining the MJO for several more cycles. Thus, this study highlights the fundamental role that the MJO can play in the adjustment of the moist equatorial atmosphere to localized surface heating.

Full access
Giulio Boccaletti
,
Ronald C. Pacanowski
,
S. George
,
H. Philander
, and
Alexey V. Fedorov

Abstract

The salient feature of the oceanic thermal structure is a remarkably shallow thermocline, especially in the Tropics and subtropics. What factors determine its depth? Theories for the deep thermohaline circulation provide an answer that depends on oceanic diffusivity, but they deny the surface winds an explicit role. Theories for the shallow ventilated thermocline take into account the influence of the wind explicitly, but only if the thermal structure in the absence of any winds, the thermal structure along the eastern boundary, is given. To complete and marry the existing theories for the oceanic thermal structure, this paper invokes the constraint of a balanced heat budget for the ocean. The oceanic heat gain occurs primarily in the upwelling zones of the Tropics and subtropics and depends strongly on oceanic conditions, specifically the depth of the thermocline. The heat gain is large when the thermocline is shallow but is small when the thermocline is deep. The constraint of a balanced heat budget therefore implies that an increase in heat loss in high latitudes can result in a shoaling of the tropical thermocline; a decrease in heat loss can cause a deepening of the thermocline. Calculations with an idealized general circulation model of the ocean confirm these inferences. Arguments based on a balanced heat budget yield an expression for the depth of the thermocline in terms of parameters such as the imposed surface winds, the surface temperature gradient, and the oceanic diffusivity. These arguments in effect bridge the theories for the ventilated thermocline and the thermohaline circulation so that previous scaling arguments are recovered as special cases of a general result.

Full access
Spencer A. Hill
,
Natalie J. Burls
,
Alexey Fedorov
, and
Timothy M. Merlis

Abstract

CO2-forced surface warming in general circulation models (GCMs) is initially polar amplified in the Arctic but not in the Antarctic—a largely hemispherically antisymmetric signal. Nevertheless, we show in CESM1 and 11 LongRunMIP GCMs that the hemispherically symmetric component of global-mean-normalized, zonal-mean warming ( T sym * ) under 4 × CO2 changes weakly or becomes modestly more polar amplified from the first decade to near-equilibrium. Conversely, the antisymmetric warming component ( T asym * ) weakens with time in all models, modestly in some including FAMOUS, but effectively vanishing in others including CESM1. We explore mechanisms underlying the robust T sym * behavior with a diffusive moist energy balance model (MEBM), which given radiative feedback parameter (λ) and ocean heat uptake ( O ) fields diagnosed from CESM1 adequately reproduces the CESM1 T sym * and T asym * fields. In further MEBM simulations perturbing λ and O , T sym * is sensitive to their symmetric components only, and more to that of λ. A three-box, two-time-scale model fitted to FAMOUS and CESM1 reveals a curiously short Antarctic fast-response time scale in FAMOUS. In additional CESM1 simulations spanning a broader range of forcings, T sym * changes modestly across 2–16 × CO2, and T sym * in a Pliocene-like simulation is more polar amplified but likewise approximately time invariant. Determining the real-world relevance of these behaviors—which imply that a surprising amount of information about near-equilibrium polar amplification emerges within decades—merits further study.

Restricted access
Alexey Fedorov
,
Marcelo Barreiro
,
Giulio Boccaletti
,
Ronald Pacanowski
, and
S. George Philander

Abstract

The impacts of a freshening of surface waters in high latitudes on the deep, slow, thermohaline circulation have received enormous attention, especially the possibility of a shutdown in the meridional overturning that involves sinking of surface waters in the northern Atlantic Ocean. A recent study by Fedorov et al. has drawn attention to the effects of a freshening on the other main component of the oceanic circulation—the swift, shallow, wind-driven circulation that varies on decadal time scales and is closely associated with the ventilated thermocline. That circulation too involves meridional overturning, but its variations and critical transitions affect mainly the Tropics. A surface freshening in mid- to high latitudes can deepen the equatorial thermocline to such a degree that temperatures along the equator become as warm in the eastern part of the basin as they are in the west, the tropical zonal sea surface temperature gradient virtually disappears, and permanently warm conditions prevail in the Tropics. In a model that has both the wind-driven and thermohaline components of the circulation, which factors determine the relative effects of a freshening on the two components and its impact on climate? Studies with an idealized ocean general circulation model find that vertical diffusivity is one of the critical parameters that affect the relative strength of the two circulation components and hence their response to a freshening. The spatial structure of the freshening and imposed meridional temperature gradients are other important factors.

Full access
Eric Guilyardi
,
Andrew Wittenberg
,
Alexey Fedorov
,
Mat Collins
,
Chunzai Wang
,
Antonietta Capotondi
,
Geert Jan van Oldenborgh
, and
Tim Stockdale

Determining how El Niño and its impacts may change over the next 10 to 100 years remains a difficult scientific challenge. Ocean-atmosphere coupled general circulation models (CGCMs) are routinely used both to analyze El Niño mechanisms and teleconnections and to predict its evolution on a broad range of time scales, from seasonal to centennial. The ability to simulate El Niño as an emergent property of these models has largely improved over the last few years. Nevertheless, the diversity of model simulations of present-day El Niño indicates current limitations in our ability to model this climate phenomenon and to anticipate changes in its characteristics. A review of the several factors that contribute to this diversity, as well as potential means to improve the simulation of El Niño, is presented.

Full access