Search Results

You are looking at 21 - 30 of 39 items for

  • Author or Editor: Brant Liebmann x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Brant Liebmann
,
M. Chelliah
, and
H. M. van den Dool

Abstract

We examine the persistence of outgoing longwave radiation (OLR) anomalies in the tropics on many different time scales during 1974–86. We calculate “one-lag autocorrelations” by constructing nonoverlapping 1-, 15-, and 60-day averages and calculating the correlation at every grid point between every time average and the following average for the entire dataset. One-day averages produce the 1argest local autocorrelations everywhere except over the equatorial Pacific. Large autocorrelations using 15-day averages are confined to the equatorial Pacific, but large autocorrelations based on 60-day averages extend eastward from the eastern Indian Ocean through South America We attribute the increase in autocorrelation in some areas as the averaging period increases to the presence of the 30–60 day oscillation in those areas The spatial match between the autocorrelation and the standard deviation of OLR is best for 60-day averages and worst for 15-day averages.

We then calculate pattern correlations over a domain that extends along the equator from the eastern Indian Ocean through the central Pacific. When plotted as a time series the one-lag pattern correlations for two-month means are seen to vary wildly, although they are generally positive. There are some extended periods, however, during which the pattern correlation remains 1arge, most notably during the 1982–83 ENSO event.

The average one-lag pattern correlation is plotted for many different time averages. They decrease until a minimum at 20-day averages, beyond which they slowly increase as the averaging 1ength is increased.

The average one-lag pattern correlations using one-day averages are smallest during the mid-year months, but using 60-day averages they are largest during these months. The seasonality, however, is not large.

Finally, we identify eastward propagation of OLR anomalies with at least two distinct phase-speeds in addition to a quasi-persistent signal. It is suggested that forecasts of OLR anomalies might be improved over simple, local persistence by a multiple regression technique.

Full access
Sara A. Rauscher
,
Anji Seth
,
Brant Liebmann
,
Jian-Hua Qian
, and
Suzana J. Camargo

Abstract

The potential of an experimental nested prediction system to improve the simulation of subseasonal rainfall statistics including daily precipitation intensity, rainy season onset and withdrawal, and the frequency and duration of dry spells is evaluated by examining a four-member ensemble of regional climate model simulations performed for the period 1982–2002 over South America. The study employs the International Centre for Theoretical Physics (ICTP) regional climate model, version 3 (RegCM3), driven with the NCEP–NCAR reanalysis and the European Centre–Hamburg GCM, version 4.5. Statistics were examined for five regions: the northern Amazon, southern Amazon, the monsoon region, Northeast Brazil, and southeastern South America. RegCM3 and the GCM are able to replicate the distribution of daily rainfall intensity in most regions. The analysis of the rainy season timing shows the observed onset occurring first over the monsoon region and then spreading northward into the southern Amazon, in contrast to some previous studies. Correlations between the onset and withdrawal date and SSTs reveal a strong relationship between the withdrawal date in the monsoon region and SSTs in the equatorial Pacific, with above-average SSTs associated with late withdrawal. Over Northeast Brazil, the regional model errors are smaller than those shown by the GCM, and the strong interannual variability in the timing of the rainy season is better simulated by RegCM3. However, the regional model displays an early bias in onset and withdrawal over the southern Amazon and the monsoon regions. Both RegCM3 and the GCM tend to underestimate (overestimate) the frequency of shorter (longer) dry spells, although the differences in dry spell frequency during warm and cold ENSO events are well simulated. The results presented here show that there is potential for added value from the regional model in simulating subseasonal statistics; however, improvements in the physical parameterizations are needed for this tropical region.

Full access
Harry H. Hendon
,
Brant Liebmann
,
Matthew Newman
,
John D. Glick
, and
J. E. Schemm

Abstract

Systematic forecast errors associated with active episodes of the tropical Madden–Julian oscillation (MJO) are examined using five winters of dynamical extended range forecasts from the National Centers for Environmental Prediction reanalysis model. Active episodes of the MJO are identified as those periods when the amplitude of either of the first two empirical orthogonal functions of intraseasonally filtered outgoing longwave radiation, which efficiently capture the MJO, is large. Forecasts initialized during active episodes of the MJO are found not to capture the eastward propagation of the tropical precipitation and circulation anomalies associated with the MJO. Rather, the MJO-induced anomalies of precipitation and winds are systematically forecast to weaken and even retrograde. By about day 7 of the forecast the convectively coupled, tropical circulation anomalies produced by the MJO are largely gone. Systematic errors in the extratropical 200-mb streamfunction also fully develop by day 10. The initial development of these errors is argued to result from the collapse of the tropical divergence forcing produced by the MJO and, thus, the lack of correct Rossby wave source. Forecast skill in the Tropics and Northern Hemisphere extratropics is found to be systematically reduced during active periods of the MJO as compared to quiescent times. This reduced skill is suggested to result because the MJO is the dominant mode of convective variability and not because the model is better able to forecast intraseasonal convection unrelated to the MJO.

Full access
Brant Liebmann
,
JoséA. Marengo
,
John D. Glick
,
Vernon E. Kousky
,
Ilana C. Wainer
, and
Oswaldo Massambani

Abstract

Observed rainfall, outgoing longwave radiation (OLR), divergence, and precipitation from the reanalysis project of the National Centers for Environmental Prediction and the National Center for Atmospheric Research are compared over the Amazon Basin. The spatial pattern of the mean and the phase of the annual cycle generally compare well, except that the amplitude of the annual cycle of model precipitation is much smaller than observed. On 10–30-day timescales, it is shown that averaging stations within a 5° radius is approximately equivalent to total wavenumber 20 (T20) spatial scale, although it is more important to have a high density of stations than an exact match of spatial scales. Ideally, there should be one station per 20 000 km2. On 10–30-day scales, observed rainfall is best correlated with OLR. Correlations between OLR and 150-mb divergence are larger than between observed rainfall and divergence or between rainfall and model precipitation. For example, if 10–30-day filtered OLR and divergence are truncated at T20 and rainfall is averaged to include stations within a 5° radius, OLR is correlated with rainfall at about −0.6, OLR is correlated with divergence at about −0.35, and rainfall is correlated with divergence at about 0.2. At least part of the lack of correlation is due to inadequate spatial sampling of rainfall. Correlations improve with larger spatial scale. The major seasonal transitions from dry to rainy regimes are captured well by OLR but not by the model quantities. The mean diurnal cycle is represented reasonably by 150-mb divergence.

Full access
Brant Liebmann
,
Ileana Bladé
,
Nicholas A. Bond
,
David Gochis
,
Dave Allured
, and
Gary T. Bates

Abstract

The core region of the North American summer monsoon is examined using spatially averaged daily rainfall observations obtained from gauges, with the objective of improving understanding of its climatology and variability. At most grid points, composite and interannual variations of the onset and end of the wet season are well defined, although, among individual stations that make up a grid average, variability is large. The trigger for monsoon onset in southern and eastern Mexico appears to be related to a change in vertical velocity, while for northwestern Mexico, Arizona, and New Mexico it is related to a reduction in stability, as indicated by a decrease in the lifted index. The wet-season rain rate is a combination of the wet-day rain rate, which decreases with distance from the coast, and the wet-day frequency, which is largest over the Sierra Madre Occidental. Thus the maximum total rate lies slightly to the west of the highest orography. As has been previously noted, onset is not always well correlated with total seasonal precipitation, so in these areas, variations of wet-day frequency and wet-day rain rate must be important. Correlations are small between the wet-day frequency and the wet-day rate, and the former is better correlated than the latter with the seasonal rain rate. Summer rainfall in central to southern Mexico exhibits moderate negative correlations with the leading pattern of sea surface temperature (SST) anomalies in the equatorial Pacific, which projects strongly onto El Niño. The influence of equatorial SSTs on southern Mexico rainfall seems to operate mainly through variability of the wet-day frequency, rather than through variations of the wet-day rain rate.

Full access
Brant Liebmann
,
George N. Kiladis
,
Carolina S. Vera
,
A. Celeste Saulo
, and
Leila M. V. Carvalho

Abstract

Regional and large-scale circulation anomalies associated with variations in rainfall downstream of the South American low-level jet are identified and compared to those in the South Atlantic convergence zone (SACZ). Composites of precipitation associated with strong jets reveal an approximate doubling of the quantities one would expect from climatology, with an evolution of the rainfall pattern from south to north. The occurrence of extreme precipitation events follows a similar pattern. Meridional cross sections of composite wind reveal a distinct low-level jet near 20°S and a baroclinic development farther south that appears to force the jet. Geopotential height, temperature, and large-scale wind composites suggest that this developing disturbance is tied to a wave train that originates in the midlatitude Pacific and turns equatorward as it crosses the Andes Mountains. Similar composites based on SACZ rainfall reveal similar features, but of opposite sign, suggesting that the phase of the wave as it crosses the Andes Mountains determines whether rainfall will be enhanced downstream of the jet or in the SACZ. The alternate suppression or enhancement of rainfall in these adjacent regions results in a precipitation “dipole.” Many previous studies have found a similar out-of-phase relationship over many time scales. The phase of the Madden–Julian oscillation (MJO) is composited relative to anomalous precipitation events, revealing statistically relevant amplitudes associated with rainfall both downstream of the jet and in the SACZ. The MJO is a particularly interesting intraseasonal oscillation because it has some predictability. It is speculated that the slowly varying dipole that has been observed is a consequence of the preferred phasing of synoptic waves due to variations of the planetary-scale basic-state flow, which is at times associated with the MJO.

Full access
Jose A. Marengo
,
Brant Liebmann
,
Vernon E. Kousky
,
Naziano P. Filizola
, and
Ilana C. Wainer

Abstract

Onset and end of the rainy season in the Amazon Basin are examined for the period 1979–96. The onset and end dates are determined by averaging daily rainfall data from many stations, and then constructing 5-day averages (pentads). Onset (end) is defined as the pentad in which rainfall exceeds (falls below) a given threshold, provided that average rainfall was well below (above) the threshold for several pentads preceding onset (end), and well above (below) the threshold for several pentads after onset (end). For the criteria chosen, the climatological onset progresses toward the southeast, arriving in mid-October, and then toward the mouth of the Amazon, arriving near the end of the year. The end dates are earliest in the southeast and progress toward the north, but withdrawal is slower than onset. The onset dates, however, are quite sensitive to changes in the threshold. If the threshold is doubled, for example, the sense of onset is reversed, with onset occurring toward the northwest. Changes in threshold do not change the direction of the progression of the end of the rainy season.

The central Amazon shows the largest variation in the date of onset. In several years, onset in the southeast occurs before that in the central Amazon, but onset near the mouth is always latest. There is an unexpectedly low relationship between the length of the rainy season and total accumulation. Likewise, there is little relationship between the onset (and end) date and the total accumulation.

Composites of outgoing longwave radiation and the low-level wind field show that in the central Amazon, onset is associated with an anomalous anticyclone and enhanced trade winds in the Atlantic. Near the mouth of the Amazon, however, onset is associated with large-scale northerly anomalies, and the zonal component of the trade winds is reduced.

There is an apparent association between sea surface temperature anomalies in the tropical Atlantic and Pacific and the pentads of onset and end of the rainy season in the northern and central Amazon, and near its mouth. The sense is that a warm Pacific and cold Atlantic result in a delayed onset and early withdrawal. Although the strong El Niño of 1982/83 and La Niña 1988/89 were examples of a delayed and early onset, respectively, the relationships it still holds these years are not considered.

Full access
Awolou Sossa
,
Brant Liebmann
,
Ileana Bladé
,
Dave Allured
,
Harry H. Hendon
,
Pete Peterson
, and
Andrew Hoell

Abstract

This study focuses on the impact of the Madden–Julian oscillation (MJO)—as monitored by a well-known multivariate index—on large daily precipitation events in West Africa for the period 1981–2014. Two seasons are considered: the near-equatorial wet season in March–May (MAM) and the peak of the West African monsoon during July–September (JAS), when the intertropical convergence zone (ITCZ) is at its most northerly position. Although the MJO-related interannual variation of seasonal mean rainfall is large, the focus here is on the impacts of the MJO on daily time scales because variations in the frequency of intense, short-term, flood-causing, rainfall events are more important for West African agriculture than variations in seasonal precipitation, particularly near the Guinean coast, where precipitation is abundant. Using composites based on thresholds of daily precipitation amounts, changes in mean precipitation and frequency of the heaviest daily events associated with the phase of the MJO are investigated. The expected modulation of mean rainfall by the MJO is much stronger during MAM than during JAS; yet the modulation of the largest events (i.e., daily rainfall rates above the 90th percentile) is comparable in both seasons. Conservative statistical tests of local and field significance indicate unambiguous impacts of the MJO of the expected sign during certain phases, but the nature of the impact depends on the local seasonal precipitation regime. For instance, in JAS, the early stages of the MJO increase the risk of flooding in the Sahel monsoon region while providing relief to the dry southern coast.

Full access
Michel N. Muza
,
Leila M. V. Carvalho
,
Charles Jones
, and
Brant Liebmann

Abstract

Intraseasonal and interannual variability of extreme wet and dry anomalies over southeastern Brazil and the western subtropical South Atlantic Ocean are investigated. Precipitation data are obtained from the Global Precipitation Climatology Project (GPCP) in pentads during 23 austral summers (December–February 1979/80–2001/02). Extreme wet (dry) events are defined according to 75th (25th) percentiles of precipitation anomaly distributions observed in two time scales: intraseasonal and interannual. The agreement between the 25th and 75th percentiles of the GPCP precipitation and gridded precipitation obtained from stations in Brazil is also examined. Variations of extreme wet and dry anomalies on interannual time scales are investigated along with variations of sea surface temperature (SST) and circulation anomalies. The South Atlantic SST dipole seems related to interannual variations of extreme precipitation events over southeastern Brazil. It is shown that extreme wet and dry events in the continental portion of the South Atlantic convergence zone (SACZ) are decoupled from extremes over the oceanic portion of the SACZ and there is no coherent dipole of extreme precipitation regimes between tropics and subtropics on interannual time scales. On intraseasonal time scales, the occurrence of extreme dry and wet events depends on the propagation phase of extratropical wave trains and consequent intensification (weakening) of 200-hPa zonal winds. Extreme wet and dry events over southeastern Brazil and subtropical Atlantic are in phase on intraseasonal time scales. Extreme wet events over southeastern Brazil and subtropical Atlantic are observed in association with low-level northerly winds above the 75th percentile of the seasonal climatology over central-eastern South America. Extreme wet events on intraseasonal time scales over southeastern Brazil are more frequent during seasons not classified as extreme wet or dry on interannual time scales.

Full access
Brant Liebmann
,
George N. Kiladis
,
JoséA. Marengo
,
Tércio Ambrizzi
, and
John D. Glick

Abstract

Relationships between deep convection over South America and the atmospheric circulation are examined, with emphasis on submonthly variations of the South Atlantic convergence zone (SACZ) during austral summer. Outgoing longwave radiation (OLR) is used as a proxy for convection, while the associated circulation patterns are depicted by the National Centers for Environmental Prediction Reanalysis.

Over South America and the adjacent oceans, OLR fluctuations with periods less than 90 days show maximum variance in the SACZ and over central South America during December–February. There is a local minimum in variance over the southern Amazon Basin, where mean convection is at a maximum. OLR spectra display several statistically relevant peaks corresponding to periods of less than 30 days over tropical South America, with the relative proportion of higher-frequency power increasing as the base grid point is moved to the southeast within the SACZ.

Correlations between submonthly (2–30-day) OLR in the vicinity of the SACZ and 200-mb streamfunction reveal the preferred path of Rossby wave energy impinging on the SACZ from the midlatitudes of the Southern Hemisphere. Episodes of enhanced convection within the SACZ, indicated by negative OLR anomalies, occur at the leading edge of upper-level troughs propagating into the region. The corresponding pattern at 850 mb reveals that the disturbances are nearly equivalent barotropic west of South America but tilt westward with height in the region of the SACZ. Negative low-level temperature anomalies lie to the southwest of the convection. The results are consistent with baroclinic development along an associated cold front.

Convection over the southwestern Amazon Basin on submonthly timescales is seen to progress into the region from the south. Upper-level anomalies, which at times may play a role in the initiation of the convection, move eastward and rapidly become decoupled from the convection. Low-level cold air along the eastern flank of the Andes appears linked to the convection as it moves northward. In contrast, convection over the southeastern Amazon is accompanied by disturbances moving into the area from the Atlantic, but there is little sign of a low-level temperature anomaly. In this case convection seems to result in cross-equatorial outflow into the North Atlantic, rather than be the result of forcing from the extratropics.

The authors speculate that the relatively stable position of the SACZ is associated with a Rossby wave guide, which ultimately is related to the large-scale circulation driven by sources and sinks of diabatic heating. It also appears that the SACZ forms when the northwesterly flow associated with a low-level trough is able to tap moisture from the Amazon.

Full access