Search Results

You are looking at 21 - 27 of 27 items for :

  • Author or Editor: J. Anderson x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
David J. Diner
,
Thomas P. Ackerman
,
Theodore L. Anderson
,
Jens Bösenberg
,
Amy J. Braverman
,
Robert J. Charlson
,
William D. Collins
,
Roger Davies
,
Brent N. Holben
,
Chris A . Hostetler
,
Ralph A. Kahn
,
John V. Martonchik
,
Robert T. Menzies
,
Mark A. Miller
,
John A. Ogren
,
Joyce E. Penner
,
Philip J. Rasch
,
Stephen E. Schwartz
,
John H. Seinfeld
,
Graeme L. Stephens
,
Omar Torres
,
Larry D. Travis
,
Bruce A . Wielicki
, and
Bin Yu

Aerosols exert myriad influences on the earth's environment and climate, and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. While a vast array of observed and modeled data are becoming available, the aerosol research community currently lacks the necessary tools and infrastructure to reap maximum scientific benefit from these data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. Maximizing the longterm benefit from these data also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the earth system can be achieved only through a multidisciplinary, interagency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies, can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models, and establishing an accurate, consistent, and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of the effort required, we present a set of recommendations dealing with data interoperability; measurement and model integration; multisensor synergy; data summarization and mining; model evaluation; calibration and validation; augmentation of surface and in situ measurements; advances in passive and active remote sensing; and design of satellite missions. Without an initiative of this nature, the scientific and policy communities will continue to struggle with understanding the quantitative impact of complex aerosol processes on regional and global climate change and air quality.

Full access
Jielun Sun
,
Steven P. Oncley
,
Sean P. Burns
,
Britton B. Stephens
,
Donald H. Lenschow
,
Teresa Campos
,
Russell K. Monson
,
David S. Schimel
,
William J. Sacks
,
Stephan F. J. De Wekker
,
Chun-Ta Lai
,
Brian Lamb
,
Dennis Ojima
,
Patrick Z. Ellsworth
,
Leonel S. L. Sternberg
,
Sharon Zhong
,
Craig Clements
,
David J. P. Moore
,
Dean E. Anderson
,
Andrew S. Watt
,
Jia Hu
,
Mark Tschudi
,
Steven Aulenbach
,
Eugene Allwine
, and
Teresa Coons

A significant fraction of Earth consists of mountainous terrain. However, the question of how to monitor the surface–atmosphere carbon exchange over complex terrain has not been fully explored. This article reports on studies by a team of investigators from U.S. universities and research institutes who carried out a multiscale and multidisciplinary field and modeling investigation of the CO2 exchange between ecosystems and the atmosphere and of CO2 transport over complex mountainous terrain in the Rocky Mountain region of Colorado. The goals of the field campaign, which included ground and airborne in situ and remote-sensing measurements, were to characterize unique features of the local CO2 exchange and to find effective methods to measure regional ecosystem–atmosphere CO2 exchange over complex terrain. The modeling effort included atmospheric and ecological numerical modeling and data assimilation to investigate regional CO2 transport and biological processes involved in ecosystem–atmosphere carbon exchange. In this report, we document our approaches, demonstrate some preliminary results, and discuss principal patterns and conclusions concerning ecosystem–atmosphere carbon exchange over complex terrain and its relation to past studies that have considered these processes over much simpler terrain.

Full access
Edward J. Zipser
,
Cynthia H. Twohy
,
Si-Chee Tsay
,
K. Lee Thornhill
,
Simone Tanelli
,
Robert Ross
,
T. N. Krishnamurti
,
Q. Ji
,
Gregory Jenkins
,
Syed Ismail
,
N. Christina Hsu
,
Robbie Hood
,
Gerald M. Heymsfield
,
Andrew Heymsfield
,
Jeffrey Halverson
,
H. Michael Goodman
,
Richard Ferrare
,
Jason P. Dunion
,
Michael Douglas
,
Robert Cifelli
,
Gao Chen
,
Edward V. Browell
, and
Bruce Anderson

In 2006, NASA led a field campaign to investigate the factors that control the fate of African easterly waves (AEWs) moving westward into the tropical Atlantic Ocean. Aircraft and surface-based equipment were based on Cape Verde's islands, helping to fill some of the data void between Africa and the Caribbean. Taking advantage of the international African Monsoon Multidisciplinary Analysis (AMMA) program over the continent, the NASA-AMMA (NAMMA) program used enhanced upstream data, whereas NOAA aircraft farther west in the Atlantic studied several of the storms downstream. Seven AEWs were studied during AMMA, with at least two becoming tropical cyclones. Some of the waves that did not develop while being sampled near Cape Verde likely intensified in the central Atlantic instead. NAMMA observations were able to distinguish between the large-scale wave structure and the smaller-scale vorticity maxima that often form within the waves. A special complication of the east Atlantic environment is the Saharan air layer (SAL), which frequently accompanies the AEWs and may introduce dry air and heavy aerosol loading into the convective storm systems in the AEWs. One of the main achievements of NAMMA was the acquisition of a database of remote sensing and in situ observations of the properties of the SAL, enabling dynamic models and satellite retrieval algorithms to be evaluated against high-quality real data. Ongoing research with this database will help determine how the SAL influences cloud microphysics and perhaps also tropical cyclogenesis, as well as the more general question of recognizing the properties of small-scale vorticity maxima within tropical waves that are more likely to become tropical cyclones.

Full access
Robert M. Rauber
,
Bjorn Stevens
,
Harry T. Ochs III
,
Charles Knight
,
B. A. Albrecht
,
A. M. Blyth
,
C. W. Fairall
,
J. B. Jensen
,
S. G. Lasher-Trapp
,
O. L. Mayol-Bracero
,
G. Vali
,
J. R. Anderson
,
B. A. Baker
,
A. R. Bandy
,
E. Burnet
,
J.-L. Brenguier
,
W. A. Brewer
,
P. R. A. Brown
,
R Chuang
,
W. R. Cotton
,
L. Di Girolamo
,
B. Geerts
,
H. Gerber
,
S. Göke
,
L. Gomes
,
B. G. Heikes
,
J. G. Hudson
,
P. Kollias
,
R. R Lawson
,
S. K. Krueger
,
D. H. Lenschow
,
L. Nuijens
,
D. W. O'Sullivan
,
R. A. Rilling
,
D. C. Rogers
,
A. P. Siebesma
,
E. Snodgrass
,
J. L. Stith
,
D. C. Thornton
,
S. Tucker
,
C. H. Twohy
, and
P. Zuidema

Shallow, maritime cumuli are ubiquitous over much of the tropical oceans, and characterizing their properties is important to understanding weather and climate. The Rain in Cumulus over the Ocean (RICO) field campaign, which took place during November 2004–January 2005 in the trades over the western Atlantic, emphasized measurements of processes related to the formation of rain in shallow cumuli, and how rain subsequently modifies the structure and ensemble statistics of trade wind clouds. Eight weeks of nearly continuous S-band polarimetric radar sampling, 57 flights from three heavily instrumented research aircraft, and a suite of ground- and ship-based instrumentation provided data on trade wind clouds with unprecedented resolution. Observational strategies employed during RICO capitalized on the advances in remote sensing and other instrumentation to provide insight into processes that span a range of scales and that lie at the heart of questions relating to the cause and effects of rain from shallow maritime cumuli.

Full access
Robert M. Rauber
,
Harry T. Ochs III
,
L. Di Girolamo
,
S. Göke
,
E. Snodgrass
,
Bjorn Stevens
,
Charles Knight
,
J. B. Jensen
,
D. H. Lenschow
,
R. A. Rilling
,
D. C. Rogers
,
J. L. Stith
,
B. A. Albrecht
,
P. Zuidema
,
A. M. Blyth
,
C. W. Fairall
,
W. A. Brewer
,
S. Tucker
,
S. G. Lasher-Trapp
,
O. L. Mayol-Bracero
,
G. Vali
,
B. Geerts
,
J. R. Anderson
,
B. A. Baker
,
R. P. Lawson
,
A. R. Bandy
,
D. C. Thornton
,
E. Burnet
,
J-L. Brenguier
,
L. Gomes
,
P. R. A. Brown
,
P. Chuang
,
W. R. Cotton
,
H. Gerber
,
B. G. Heikes
,
J. G. Hudson
,
P. Kollias
,
S. K. Krueger
,
L. Nuijens
,
D. W. O'Sullivan
,
A. P. Siebesma
, and
C. H. Twohy
Full access
Mary C. Barth
,
Christopher A. Cantrell
,
William H. Brune
,
Steven A. Rutledge
,
James H. Crawford
,
Heidi Huntrieser
,
Lawrence D. Carey
,
Donald MacGorman
,
Morris Weisman
,
Kenneth E. Pickering
,
Eric Bruning
,
Bruce Anderson
,
Eric Apel
,
Michael Biggerstaff
,
Teresa Campos
,
Pedro Campuzano-Jost
,
Ronald Cohen
,
John Crounse
,
Douglas A. Day
,
Glenn Diskin
,
Frank Flocke
,
Alan Fried
,
Charity Garland
,
Brian Heikes
,
Shawn Honomichl
,
Rebecca Hornbrook
,
L. Gregory Huey
,
Jose L. Jimenez
,
Timothy Lang
,
Michael Lichtenstern
,
Tomas Mikoviny
,
Benjamin Nault
,
Daniel O’Sullivan
,
Laura L. Pan
,
Jeff Peischl
,
Ilana Pollack
,
Dirk Richter
,
Daniel Riemer
,
Thomas Ryerson
,
Hans Schlager
,
Jason St. Clair
,
James Walega
,
Petter Weibring
,
Andrew Weinheimer
,
Paul Wennberg
,
Armin Wisthaler
,
Paul J. Wooldridge
, and
Conrad Ziegler

Abstract

The Deep Convective Clouds and Chemistry (DC3) field experiment produced an exceptional dataset on thunderstorms, including their dynamical, physical, and electrical structures and their impact on the chemical composition of the troposphere. The field experiment gathered detailed information on the chemical composition of the inflow and outflow regions of midlatitude thunderstorms in northeast Colorado, west Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the upper-tropospheric convective plume. These data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, chemistry in the upper troposphere that is affected by the convection, and related source characterization of the three sampling regions. DC3 also documented biomass-burning plumes and the interactions of these plumes with deep convection.

Full access
William L. Smith Jr.
,
Christy Hansen
,
Anthony Bucholtz
,
Bruce E. Anderson
,
Matthew Beckley
,
Joseph G. Corbett
,
Richard I. Cullather
,
Keith M. Hines
,
Michelle Hofton
,
Seiji Kato
,
Dan Lubin
,
Richard H. Moore
,
Michal Segal Rosenhaimer
,
Jens Redemann
,
Sebastian Schmidt
,
Ryan Scott
,
Shi Song
,
John D. Barrick
,
J. Bryan Blair
,
David H. Bromwich
,
Colleen Brooks
,
Gao Chen
,
Helen Cornejo
,
Chelsea A. Corr
,
Seung-Hee Ham
,
A. Scott Kittelman
,
Scott Knappmiller
,
Samuel LeBlanc
,
Norman G. Loeb
,
Colin Miller
,
Louis Nguyen
,
Rabindra Palikonda
,
David Rabine
,
Elizabeth A. Reid
,
Jacqueline A. Richter-Menge
,
Peter Pilewskie
,
Yohei Shinozuka
,
Douglas Spangenberg
,
Paul Stackhouse
,
Patrick Taylor
,
K. Lee Thornhill
,
David van Gilst
, and
Edward Winstead

Abstract

The National Aeronautics and Space Administration (NASA)’s Arctic Radiation-IceBridge Sea and Ice Experiment (ARISE) acquired unique aircraft data on atmospheric radiation and sea ice properties during the critical late summer to autumn sea ice minimum and commencement of refreezing. The C-130 aircraft flew 15 missions over the Beaufort Sea between 4 and 24 September 2014. ARISE deployed a shortwave and longwave broadband radiometer (BBR) system from the Naval Research Laboratory; a Solar Spectral Flux Radiometer (SSFR) from the University of Colorado Boulder; the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) from the NASA Ames Research Center; cloud microprobes from the NASA Langley Research Center; and the Land, Vegetation and Ice Sensor (LVIS) laser altimeter system from the NASA Goddard Space Flight Center. These instruments sampled the radiant energy exchange between clouds and a variety of sea ice scenarios, including prior to and after refreezing began. The most critical and unique aspect of ARISE mission planning was to coordinate the flight tracks with NASA Cloud and the Earth’s Radiant Energy System (CERES) satellite sensor observations in such a way that satellite sensor angular dependence models and derived top-of-atmosphere fluxes could be validated against the aircraft data over large gridbox domains of order 100–200 km. This was accomplished over open ocean, over the marginal ice zone (MIZ), and over a region of heavy sea ice concentration, in cloudy and clear skies. ARISE data will be valuable to the community for providing better interpretation of satellite energy budget measurements in the Arctic and for process studies involving ice–cloud–atmosphere energy exchange during the sea ice transition period.

Full access