Search Results

You are looking at 21 - 25 of 25 items for

  • Author or Editor: Juliana Dias x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Brandon Wolding
,
Scott W. Powell
,
Fiaz Ahmed
,
Juliana Dias
,
Maria Gehne
,
George Kiladis
, and
J. David Neelin

Abstract

This study examines thermodynamic–convection coupling in observations and reanalyses, and attempts to establish process-level benchmarks needed to guide model development. Thermodynamic profiles obtained from the NOAA Integrated Global Radiosonde Archive, COSMIC-1 GPS radio occultations, and several reanalyses are examined alongside Tropical Rainfall Measuring Mission precipitation estimates. Cyclical increases and decreases in a bulk measure of lower-tropospheric convective instability are shown to be coupled to the cyclical amplification and decay of convection. This cyclical flow emerges from conditional-mean analysis in a thermodynamic space composed of two components: a measure of “undiluted” instability, which neglects lower-free-tropospheric (LFT) entrainment, and a measure of the reduction of instability by LFT entrainment. The observational and reanalysis products examined share the following qualitatively robust characterization of these convective cycles: increases in undiluted instability tend to occur when the LFT is less saturated, are followed by increases in LFT saturation and precipitation rate, which are then followed by decreases in undiluted instability. Shallow, convective, and stratiform precipitation are coupled to these cycles in a manner consistent with meteorological expectations. In situ and satellite observations differ systematically from reanalyses in their depictions of lower-tropospheric temperature and moisture variations throughout these convective cycles. When using reanalysis thermodynamic fields, these systematic differences cause variations in lower-free-tropospheric saturation deficit to appear less influential in determining the strength of convection than is suggested by observations. Disagreements among reanalyses, as well as between reanalyses and observations, pose significant challenges to process-level assessments of thermodynamic–convection coupling.

Full access
Lisa Bengtsson
,
Juliana Dias
,
Maria Gehne
,
Peter Bechtold
,
Jeffrey Whitaker
,
Jian-Wen Bao
,
Linus Magnusson
,
Sara Michelson
,
Philip Pegion
,
Stefan Tulich
, and
George N. Kiladis

Abstract

There is a longstanding challenge in numerical weather and climate prediction to accurately model tropical wave variability, including convectively coupled equatorial waves (CCEWs) and the Madden–Julian oscillation. For subseasonal prediction, the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) has been shown to be superior to the NOAA Global Forecast System (GFS) in simulating tropical variability, suggesting that the ECMWF model is better at simulating the interaction between cumulus convection and the large-scale tropical circulation. In this study, we experiment with the cumulus convection scheme of the ECMWF IFS in a research version of the GFS to understand which aspects of the IFS cumulus convection scheme outperform those of the GFS convection scheme in the tropics. We show that the IFS cumulus convection scheme produces significantly different tropical moisture and temperature tendency profiles from those simulated by the GFS convection scheme when it is coupled with other physics schemes in the GFS physics package. We show that a consistent treatment of the interaction between parameterized convective plumes in the GFS planetary boundary layer (PBL) and the IFS convection scheme is required for the GFS to replicate the tropical temperature and moisture profiles simulated by the IFS model. The GFS model with the IFS convection scheme, and the consistent treatment between the convection and PBL schemes, produces much more organized convection in the tropics, and generates tropical waves that propagate more coherently than the GFS in its default configuration due to better simulated interaction between low-level convergence and precipitation.

Free access
George N. Kiladis
,
Juliana Dias
,
Katherine H. Straub
,
Matthew C. Wheeler
,
Stefan N. Tulich
,
Kazuyoshi Kikuchi
,
Klaus M. Weickmann
, and
Michael J. Ventrice
Free access
Brandon Wolding
,
Adam Rydbeck
,
Juliana Dias
,
Fiaz Ahmed
,
Maria Gehne
,
George Kiladis
,
Emily M. Riley Dellaripa
,
Xingchao Chen
, and
Isabel L. McCoy

Abstract

An energy budget combining atmospheric moist static energy (MSE) and upper ocean heat content (OHC) is used to examine the processes impacting day-to-day convective variability in the tropical Indian and western Pacific Oceans. Feedbacks arising from atmospheric and oceanic transport processes, surface fluxes, and radiation drive the cyclical amplification and decay of convection around suppressed and enhanced convective equilibrium states, referred to as shallow and deep convective discharge–recharge (D–R) cycles, respectively. The shallow convective D–R cycle is characterized by alternating enhancements of shallow cumulus and stratocumulus, often in the presence of extensive cirrus clouds. The deep convective D–R cycle is characterized by sequential increases in shallow cumulus, congestus, narrow deep precipitation, wide deep precipitation, a mix of detached anvil and altostratus and altocumulus, and once again shallow cumulus cloud types. Transitions from the shallow to deep D–R cycle are favored by a positive “column process” feedback, while discharge of convective instability and OHC by mesoscale convective systems (MCSs) contributes to transitions from the deep to shallow D–R cycle. Variability in the processes impacting MSE is comparable in magnitude to, but considerably more balanced than, variability in the processes impacting OHC. Variations in the quantity of atmosphere–ocean coupled static energy (MSE + OHC) result primarily from atmospheric and oceanic transport processes, but are mainly realized as changes in OHC. MCSs are unique in their ability to rapidly discharge both lower-tropospheric convective instability and OHC.

Open access
Randall M. Dole
,
J. Ryan Spackman
,
Matthew Newman
,
Gilbert P. Compo
,
Catherine A. Smith
,
Leslie M. Hartten
,
Joseph J. Barsugli
,
Robert S. Webb
,
Martin P. Hoerling
,
Robert Cifelli
,
Klaus Wolter
,
Christopher D. Barnet
,
Maria Gehne
,
Ronald Gelaro
,
George N. Kiladis
,
Scott Abbott
,
Elena Akish
,
John Albers
,
John M. Brown
,
Christopher J. Cox
,
Lisa Darby
,
Gijs de Boer
,
Barbara DeLuisi
,
Juliana Dias
,
Jason Dunion
,
Jon Eischeid
,
Christopher Fairall
,
Antonia Gambacorta
,
Brian K. Gorton
,
Andrew Hoell
,
Janet Intrieri
,
Darren Jackson
,
Paul E. Johnston
,
Richard Lataitis
,
Kelly M. Mahoney
,
Katherine McCaffrey
,
H. Alex McColl
,
Michael J. Mueller
,
Donald Murray
,
Paul J. Neiman
,
William Otto
,
Ola Persson
,
Xiao-Wei Quan
,
Imtiaz Rangwala
,
Andrea J. Ray
,
David Reynolds
,
Emily Riley Dellaripa
,
Karen Rosenlof
,
Naoko Sakaeda
,
Prashant D. Sardeshmukh
,
Laura C. Slivinski
,
Lesley Smith
,
Amy Solomon
,
Dustin Swales
,
Stefan Tulich
,
Allen White
,
Gary Wick
,
Matthew G. Winterkorn
,
Daniel E. Wolfe
, and
Robert Zamora

Abstract

Forecasts by mid-2015 for a strong El Niño during winter 2015/16 presented an exceptional scientific opportunity to accelerate advances in understanding and predictions of an extreme climate event and its impacts while the event was ongoing. Seizing this opportunity, the National Oceanic and Atmospheric Administration (NOAA) initiated an El Niño Rapid Response (ENRR), conducting the first field campaign to obtain intensive atmospheric observations over the tropical Pacific during El Niño.

The overarching ENRR goal was to determine the atmospheric response to El Niño and the implications for predicting extratropical storms and U.S. West Coast rainfall. The field campaign observations extended from the central tropical Pacific to the West Coast, with a primary focus on the initial tropical atmospheric response that links El Niño to its global impacts. NOAA deployed its Gulfstream-IV (G-IV) aircraft to obtain observations around organized tropical convection and poleward convective outflow near the heart of El Niño. Additional tropical Pacific observations were obtained by radiosondes launched from Kiritimati , Kiribati, and the NOAA ship Ronald H. Brown, and in the eastern North Pacific by the National Aeronautics and Space Administration (NASA) Global Hawk unmanned aerial system. These observations were all transmitted in real time for use in operational prediction models. An X-band radar installed in Santa Clara, California, helped characterize precipitation distributions. This suite supported an end-to-end capability extending from tropical Pacific processes to West Coast impacts. The ENRR observations were used during the event in operational predictions. They now provide an unprecedented dataset for further research to improve understanding and predictions of El Niño and its impacts.

Full access