Search Results

You are looking at 21 - 30 of 51 items for

  • Author or Editor: Kevin Knupp x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Timothy A. Coleman
and
Kevin R. Knupp

Abstract

The “impedance relation” between the wind perturbation within an ageostrophic atmospheric disturbance and its pressure perturbation and intrinsic propagation speed has been in use for decades. The correlation between wind and pressure perturbation was established through this relation. However, a simple Lagrangian model of an air parcel traversing an idealized sinusoidal wave in the pressure field indicates that the impedance relation produces significant errors. Examination of the nonlinearized horizontal momentum equation with a sinusoidal disturbance in pressure reveals an additional nonlinear term in the impedance relation, not previously included.

In this paper, the impedance relation is rederived, with the solution being the original equation with the addition of the nonlinear term. The new equation is then evaluated against the Lagrangian model of an air parcel traversing an idealized gravity wave, as well as three observed cases. It is shown that the new impedance relation is indeed more accurate in predicting wind perturbations in disturbances based on pressure perturbations and intrinsic speed than the accepted equation. Implications for determination of the intrinsic phase speed of a disturbance when pressure and wind perturbations are known (another widely used application of the impedance relation) are also discussed.

Full access
Kevin R. Knupp
and
William R. Cotton

Abstract

This paper utilizes experimental data from a multiple Doppler radar and surface mesoscale network to describe the evolution and structure of a small, isolated, mesoscale convective system over the South Park region of central Colorado. This system evolved from a cluster of convective clouds which eventually transformed to a mature system possessing both stratiform and convective components. The structure of individual precipitating convective clouds comprising the mature system depended on their location (upshear or downshear) relative to the system. Unsteady upshear convective components formed discretely and propagated upshear. In contrast, downshear convective components occupied a greater area, exhibited more steadiness, and propagated downshear.

Doppler analyses indicate that mesoscale updrafts within anvils flanking the convective cores existed relatively early, about 1.5 h after first cloud formation. Mesoscale downdrafts did not appear until ∼3 h after precipitation initiation. The appearance of a mesoscale downdraft was temporally correlated with intensification of the upshear convective region. The analyses suggest a close dependence between upshear convection and the stratiform region in this case. Upshear convection supplied condensate to the stratiform region, while the stratiform region produced mesoscale downdrafts whose outflow boundary helped maintain the upshear convection.

Full access
Timothy A. Coleman
and
Kevin R. Knupp

Abstract

Ducted gravity waves and wake lows have been associated with numerous documented cases of “severe” winds (>25 m s−1) and wind damage. These winds are associated with the pressure perturbations and transient mesoscale pressure gradients occurring in many gravity waves and wake lows. However, not all wake lows and gravity waves produce significant winds nor wind damage. In this paper, the factors that affect the surface winds produced by ducted gravity waves and wake lows are reviewed and examined. It is shown theoretically that the factors most conducive to high surface winds include a large-amplitude pressure disturbance, a slow intrinsic speed of propagation, and an ambient wind with the same sign as the pressure perturbation (i.e., a headwind for a pressure trough). Multiple case studies are presented, contrasting gravity waves and wake lows with varying amplitudes, intrinsic speeds, and background winds. In some cases high winds occurred, while in others they did not. In each case, the factor(s) responsible for significant winds, or the lack thereof, are discussed. It is hoped that operational forecasters will be able to, in some cases, compute these factors in real time, to ascertain in more detail the threat of damaging wind from an approaching ducted gravity wave or wake low.

Full access
Timothy A. Coleman
and
Kevin R. Knupp

Abstract

The kinematics and thermodynamics of wake lows have been extensively examined in the literature. However, there has been relatively little focus on the widespread, sometimes very strong winds associated with wake lows. Some wake lows are, essentially, severe local storms, producing widespread and sometimes intense damage, similar to that of a derecho, but they occur in environments supporting elevated convection, a phenomenon not often perceived as a significant wind damage threat. Three significant wake lows that affected Alabama and/or Georgia, producing widespread (25 000–50 000 km2) wind damage, and local wind gusts near 25 m s−1, are reviewed in detail. The environments and morphology of the wake lows are addressed, using radar, surface, and upper-air data.

Full access
Stephanie M. Wingo
and
Kevin R. Knupp

Abstract

Previous work has shown that vorticity mixing in the tropical cyclone (TC) inner core can promote mesovortex (MV) formation and impact storm intensity. Observations of MVs have largely been serendipitous but are necessary to improve understanding of these features and their role in TC dynamics. This study presents nearly 10 h of ground-based dual-Doppler analysis of MVs in the eyewall of Hurricane Ike (2008) near and during landfall. Derived 3D winds, vertical vorticity, horizontal divergence, and perturbation pressures are analyzed. Results indicate persistent kinematic field arrangements and evolving vertical structures. Perturbation pressure retrievals suggest local pressure minima associated with the MVs. Preferential updraft locations appear to transition cyclonically about the local vorticity maximum as the MVs progress around the eye. Based on published observational datasets, the dual-Doppler updraft magnitudes in Ike’s MVs are within the top 5%–10% of TC vertical velocities. The MVs are marked by peak vorticity in the lowest 2 km and contain vertically coherent vorticity structures extending to 8 km AGL. After prolonged land interaction, the MV structures deteriorate. First, the vertical extent of localized vorticity diminishes, followed by a deterioration in the prelandfall characteristic kinematic arrangements. This supports the notion that the replenishment of a high vorticity annulus contributes to MV production and maintenance, and when the elevated vorticity aloft is not maintained, MV kinematic patterns become less consistent. It is unclear whether the decay of the vertically coherent vorticity structures occurs in response to land interaction, TC inner core processes, or some combination of both.

Full access
Kevin R. Knupp
,
Simon Paech
, and
Steven Goodman

Abstract

The contrasting behavior of cloud-to-ground (CG) lightning associated with three adjacent supercell thunderstorms observed on 18 May 1995 is examined. Thunderstorm characteristics and anvil interactions are related to north–south variations in CG lightning properties. While tornadic activity was not consistently related to variations in CG properties, radar reflectivity factor area greater than 65 dBZ was generally inversely related to CG frequency. It is hypothesized that suppression of CG activity was produced by reduction of large number concentrations of precipitation-sized particles (i.e., presence of large hail) in the particle interaction mixed phase region. It is further hypothesized that seeding from upstream storm anvil ice was associated with nearly coincident enhancement of CG activity in downstream storms. Likewise, it is hypothesized that the reduction in 65 dBZ echo area (inferred suppression of hail) is related to this inferred anvil seeding process.

Full access
Kevin R. Knupp
,
Justin Walters
, and
Michael Biggerstaff

Abstract

Detailed observations of boundary layer structure were acquired on 14 September 2001, prior to and during the landfall of Tropical Storm Gabrielle. The Mobile Integrated Profiling System (MIPS) and the Shared Mobile Atmospheric Research and Teaching Radar (SMART-R) were collocated at the western Florida coastline near Venice, very close to the wind center at landfall. Prior to landfall, the boundary layer was rendered weakly stable by a long period of evaporational cooling and mesoscale downdrafts within extensive stratiform precipitation that started 18 h before landfall. The cool air mass was expansive, with an area within the 23°C surface isotherm of about 50 000 km2. East-northeasterly surface flow transported this cool air off the west coast of Florida, toward the convergent warm core of the Gabrielle, and promoted the development of shallow warm and cold fronts that were prominent during the landfall phase.

Airflow properties of the boundary layer around the coastal zone are examined using the MIPS and SMART-R data. Wind profiles exhibited considerable temporal variability throughout the period of observations. The stable offshore flow within stratiform precipitation exhibited a modest jet that descended from about 600 to 300 m within the 20-km zone centered on the coastline. In contrast, the onshore flow on the western side of the wind center produced a more turbulent boundary layer that exhibited a well-defined top varying between 400 and 1000 m MSL. The horizontal variability of each boundary layer is examined using high-resolution Doppler radar scans at locations up to 15 km on either side of the coastline, along the mean flow direction of the boundary layer. These analyses reveal that transitions in boundary layer structure for both the stable and unstable regimes were most substantial within 5 km of the coastline.

Full access
Karen A. Kosiba
,
Joshua Wurman
,
Kevin Knupp
,
Kyle Pennington
, and
Paul Robinson

Abstract

During the Ontario Winter Lake-effect Systems (OWLeS) field campaign, 12 long-lake-axis-parallel (LLAP) snowband events were sampled. Misovortices occurred in 11 of these events, with characteristic diameters of ~800 m, differential velocities of ~11 m s−1, and spacing between vortices of ~3 km. A detailed observational analysis of one such snowband provided further insight on the processes governing misovortex genesis and evolution, adding to the growing body of knowledge of these intense snowband features. On 15–16 December 2013, a misovortex-producing snowband was exceptionally well sampled by ground-based OWLeS instrumentation, which allowed for integrated finescale dual-Doppler and surface thermodynamic analyses. Similar to other studies, horizontal shearing instability (HSI), coupled with stretching, was shown to be the primary genesis mechanism. The HSI location was influenced by snowband-generated boundaries and location of the Arctic front relative to the band. Surface temperature observations, available for the first time, indicated that the misovortices formed along a baroclinic zone. Enhanced mixing, higher radar reflectivity, and increased precipitation rate accompanied the vortices. As the snowband came ashore, OWLeS participants indicated an increase in snowfall and white out conditions with the passage of the snowband. A sharp, small-scale pressure drop, coupled with winds of ~16 m s−1, marked the passage of a misovortex and may be typical of snowband misovortices.

Open access
Kevin R. Knupp
,
Bart Geerts
, and
Steven J. Goodman

Abstract

The evolution of a small, vigorous mesoscale convective system (MCS) over northern Alabama is described using Doppler radar, GOES satellite, surface mesonet, lightning, and sounding data. The MCS formed near noon in a relatively unstable environment having weak synoptic forcing and weak shear. The initiation of separate lines and clusters of deep convection occurred in regions exhibiting cumulus cloud streets, horizontal variations in stratocumulus cloud cover, and variations in inferred soil moisture. MCS growth via merger of storms within clusters and lines, and among the clusters, was accomplished largely through intersection of storm-scale and mesoscale outflow boundaries. The MCS maximum anvil area (∼60000 km2 at 220 K) and lifetime (8 h) were about 50% that of the typical Great Plains mesoscale convective complex (MCC).

Despite its smaller size, this MCS displayed many aspects that typify the mostly nocturnal Great Plains MCS. The precipitation output was highly variable due to the transient nature of the intense convective elements, many of which produced microbursts. The radar measurements documented the formation of a stratiform region along the trailing side of an intense convective line. This stratiform region formed as decaying convective cores coalesced, rather than through advection of precipitation particles directly from the convective region. Combined GOES IR imagery and radar reflectivity analyses within the stratiform region show a sinking anvil cloud top in the presence of increases in the vertical radar reflectivity gradient within the cloud during the maturation of the stratiform region.

During its intense developing stages, the MCS generated a peak cloud-to-ground (CG) flash rate of 2400 h−1, comparable to rates produced by larger MCCs. Early on, positive CG flashes were most prevalent around intense convective core regions exhibiting strong divergence at anvil level. During the latter stages, the emergence of positive CG was coincident with the formation of a prominent radar bright band within the stratiform region. Thus, a bipole was established, but its length was quite short at approximately 50 km, 25%–50% of the distance documented in other MCSs.

Full access
Kevin R. Knupp
,
Bart Geerts
, and
John D. Tuttle

Abstract

The evolution of the mesoscale flow and precipitation distribution are investigated for a small mesoscale convective system (MCS) that evolved in a nearly barotropic environment exhibiting moderate instability and weak wind shear. Observations primarily from a single Doppler radar detail the growth of the MCS from the merger of several clusters and lines of vigorous convective cells into a mature state consisting of a weaker convective line trailed by an expanding stratiform precipitation region. Analysis of radar reflectivity reveals that this stratiform region formed in situ in the presence of weak mesoscale updraft as decaying convective cores coalesced, rather than through rearward advection of ice particles directly from the convective region. In the absence of sufficient low-level shear, the MCS collapsed rapidly as it assumed the structure of the archetypal convective line and trailing stratiform precipitation region.

Velocity–azimuth displays reveal mesoscale updrafts of about 70 cm s−1 during the active convective stage. In the mature stratiform region, the lower-tropospheric mesoscale downdraft (∼40 cm s−1) exceeded the mesoscale updraft (∼10 cm s−1) above it, and the level separating the two was relatively high at 6.5 km, about 2 km above the 0°C level. As the MCS cloud-top anvil area colder than −52°C peaked near 60000 km2, the cloud top descended at rates of 20–40 cm s−1 despite weak but sustained mesoscale updraft within the upper part of the cloud.

A rear inflow jet was observed before convective activity peaked, remained strong while the deep convection diminished, and became the main flow feature as the MCS decayed. This jet subsided from approximately 7 km at the rear end to near the surface at the leading edge of the convection. A weaker ascending front-to-rear current was found above this rear inflow jet.

No midlevel mesoscale cyclonic vortex was apparent in the echo structure of the maturing MCS. Indirect estimates of mesoscale vorticity, based on Lagrangian conservation of radar reflectivity, indicate that cyclonic rotation was present in the mesoscale downdraft region, and anticyclonic rotation occurred aloft. The magnitude of this vorticity is about half the Coriolis parameter. A positive potential vorticity anomaly is found at midlevels within the MCS, and this anomaly intensifies in depth and in strength as the system matures. This growth is consistent with the diabatic heating profile estimated from a 1D cloud model.

Full access