Search Results

You are looking at 21 - 26 of 26 items for :

  • Author or Editor: Yongkang Xue x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Randal D. Koster
,
Y. C. Sud
,
Zhichang Guo
,
Paul A. Dirmeyer
,
Gordon Bonan
,
Keith W. Oleson
,
Edmond Chan
,
Diana Verseghy
,
Peter Cox
,
Harvey Davies
,
Eva Kowalczyk
,
C. T. Gordon
,
Shinjiro Kanae
,
David Lawrence
,
Ping Liu
,
David Mocko
,
Cheng-Hsuan Lu
,
Ken Mitchell
,
Sergey Malyshev
,
Bryant McAvaney
,
Taikan Oki
,
Tomohito Yamada
,
Andrew Pitman
,
Christopher M. Taylor
,
Ratko Vasic
, and
Yongkang Xue

Abstract

The Global Land–Atmosphere Coupling Experiment (GLACE) is a model intercomparison study focusing on a typically neglected yet critical element of numerical weather and climate modeling: land–atmosphere coupling strength, or the degree to which anomalies in land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric processes. The 12 AGCM groups participating in GLACE performed a series of simple numerical experiments that allow the objective quantification of this element for boreal summer. The derived coupling strengths vary widely. Some similarity, however, is found in the spatial patterns generated by the models, with enough similarity to pinpoint multimodel “hot spots” of land–atmosphere coupling. For boreal summer, such hot spots for precipitation and temperature are found over large regions of Africa, central North America, and India; a hot spot for temperature is also found over eastern China. The design of the GLACE simulations are described in full detail so that any interested modeling group can repeat them easily and thereby place their model’s coupling strength within the broad range of those documented here.

Full access
Zhichang Guo
,
Paul A. Dirmeyer
,
Randal D. Koster
,
Y. C. Sud
,
Gordon Bonan
,
Keith W. Oleson
,
Edmond Chan
,
Diana Verseghy
,
Peter Cox
,
C. T. Gordon
,
J. L. McGregor
,
Shinjiro Kanae
,
Eva Kowalczyk
,
David Lawrence
,
Ping Liu
,
David Mocko
,
Cheng-Hsuan Lu
,
Ken Mitchell
,
Sergey Malyshev
,
Bryant McAvaney
,
Taikan Oki
,
Tomohito Yamada
,
Andrew Pitman
,
Christopher M. Taylor
,
Ratko Vasic
, and
Yongkang Xue

Abstract

The 12 weather and climate models participating in the Global Land–Atmosphere Coupling Experiment (GLACE) show both a wide variation in the strength of land–atmosphere coupling and some intriguing commonalities. In this paper, the causes of variations in coupling strength—both the geographic variations within a given model and the model-to-model differences—are addressed. The ability of soil moisture to affect precipitation is examined in two stages, namely, the ability of the soil moisture to affect evaporation, and the ability of evaporation to affect precipitation. Most of the differences between the models and within a given model are found to be associated with the first stage—an evaporation rate that varies strongly and consistently with soil moisture tends to lead to a higher coupling strength. The first-stage differences reflect identifiable differences in model parameterization and model climate. Intermodel differences in the evaporation–precipitation connection, however, also play a key role.

Full access
Augusto C. V. Getirana
,
Emanuel Dutra
,
Matthieu Guimberteau
,
Jonghun Kam
,
Hong-Yi Li
,
Bertrand Decharme
,
Zhengqiu Zhang
,
Agnes Ducharne
,
Aaron Boone
,
Gianpaolo Balsamo
,
Matthew Rodell
,
Ally M. Toure
,
Yongkang Xue
,
Christa D. Peters-Lidard
,
Sujay V. Kumar
,
Kristi Arsenault
,
Guillaume Drapeau
,
L. Ruby Leung
,
Josyane Ronchail
, and
Justin Sheffield

Abstract

Despite recent advances in land surface modeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 1° spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to match monthly Global Precipitation Climatology Project (GPCP) and Global Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l’Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced with R and B and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets and Gravity Recovery and Climate Experiment (GRACE) TWS estimates in two subcatchments of main tributaries (Madeira and Negro Rivers). At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day−1 and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.

Full access
Aaron Boone
,
Patricia de Rosnay
,
Gianpaolo Balsamo
,
Anton Beljaars
,
Franck Chopin
,
Bertrand Decharme
,
Christine Delire
,
Agnes Ducharne
,
Simon Gascoin
,
Manuela Grippa
,
Françoise Guichard
,
Yeugeniy Gusev
,
Phil Harris
,
Lionel Jarlan
,
Laurent Kergoat
,
Eric Mougin
,
Olga Nasonova
,
Anette Norgaard
,
Tristan Orgeval
,
Catherine Ottlé
,
Isabelle Poccard-Leclercq
,
Jan Polcher
,
Inge Sandholt
,
Stephane Saux-Picart
,
Christopher Taylor
, and
Yongkang Xue

The rainfall over West Africa has been characterized by extreme variability in the last half-century, with prolonged droughts resulting in humanitarian crises. There is, therefore, an urgent need to better understand and predict the West African monsoon (WAM), because social stability in this region depends to a large degree on water resources. The economies are primarily agrarian, and there are issues related to food security and health. In particular, there is a need to better understand land-atmosphere and hydrological processes over West Africa because of their potential feedbacks with the WAM. This is being addressed through a multiscale modeling approach using an ensemble of land surface models that rely on dedicated satellite-based forcing and land surface parameter products, and data from the African Multidisciplinary Monsoon Analysis (AMMA) observational field campaigns. The AMMA land surface model (LSM) Intercomparison Project (ALMIP) offline, multimodel simulations comprise the equivalent of a multimodel reanalysis product. They currently represent the best estimate of the land surface processes over West Africa from 2004 to 2007. An overview of model intercomparison and evaluation is presented. The far-reaching goal of this effort is to obtain better understanding and prediction of the WAM and the feedbacks with the surface. This can be used to improve water management and agricultural practices over this region.

Full access
Lifeng Luo
,
Alan Robock
,
Konstantin Y. Vinnikov
,
C. Adam Schlosser
,
Andrew G. Slater
,
Aaron Boone
,
Pierre Etchevers
,
Florence Habets
,
Joel Noilhan
,
Harald Braden
,
Peter Cox
,
Patricia de Rosnay
,
Robert E. Dickinson
,
Yongjiu Dai
,
Qing-Cun Zeng
,
Qingyun Duan
,
John Schaake
,
Ann Henderson-Sellers
,
Nicola Gedney
,
Yevgeniy M. Gusev
,
Olga N. Nasonova
,
Jinwon Kim
,
Eva Kowalczyk
,
Kenneth Mitchell
,
Andrew J. Pitman
,
Andrey B. Shmakin
,
Tatiana G. Smirnova
,
Peter Wetzel
,
Yongkang Xue
, and
Zong-Liang Yang

Abstract

The Project for Intercomparison of Land-Surface Parameterization Schemes phase 2(d) experiment at Valdai, Russia, offers a unique opportunity to evaluate land surface schemes, especially snow and frozen soil parameterizations. Here, the ability of the 21 schemes that participated in the experiment to correctly simulate the thermal and hydrological properties of the soil on several different timescales was examined. Using observed vertical profiles of soil temperature and soil moisture, the impact of frozen soil schemes in the land surface models on the soil temperature and soil moisture simulations was evaluated.

It was found that when soil-water freezing is explicitly included in a model, it improves the simulation of soil temperature and its variability at seasonal and interannual scales. Although change of thermal conductivity of the soil also affects soil temperature simulation, this effect is rather weak. The impact of frozen soil on soil moisture is inconclusive in this experiment due to the particular climate at Valdai, where the top 1 m of soil is very close to saturation during winter and the range for soil moisture changes at the time of snowmelt is very limited. The results also imply that inclusion of explicit snow processes in the models would contribute to substantially improved simulations. More sophisticated snow models based on snow physics tend to produce better snow simulations, especially of snow ablation. Hysteresis of snow-cover fraction as a function of snow depth is observed at the catchment but not in any of the models.

Full access
Tandong Yao
,
Yongkang Xue
,
Deliang Chen
,
Fahu Chen
,
Lonnie Thompson
,
Peng Cui
,
Toshio Koike
,
William K.-M. Lau
,
Dennis Lettenmaier
,
Volker Mosbrugger
,
Renhe Zhang
,
Baiqing Xu
,
Jeff Dozier
,
Thomas Gillespie
,
Yu Gu
,
Shichang Kang
,
Shilong Piao
,
Shiori Sugimoto
,
Kenichi Ueno
,
Lei Wang
,
Weicai Wang
,
Fan Zhang
,
Yongwei Sheng
,
Weidong Guo
,
Ailikun
,
Xiaoxin Yang
,
Yaoming Ma
,
Samuel S. P. Shen
,
Zhongbo Su
,
Fei Chen
,
Shunlin Liang
,
Yimin Liu
,
Vijay P. Singh
,
Kun Yang
,
Daqing Yang
,
Xinquan Zhao
,
Yun Qian
,
Yu Zhang
, and
Qian Li

Abstract

The Third Pole (TP) is experiencing rapid warming and is currently in its warmest period in the past 2,000 years. This paper reviews the latest development in multidisciplinary TP research associated with this warming. The rapid warming facilitates intense and broad glacier melt over most of the TP, although some glaciers in the northwest are advancing. By heating the atmosphere and reducing snow/ice albedo, aerosols also contribute to the glaciers melting. Glacier melt is accompanied by lake expansion and intensification of the water cycle over the TP. Precipitation has increased over the eastern and northwestern TP. Meanwhile, the TP is greening and most regions are experiencing advancing phenological trends, although over the southwest there is a spring phenological delay mainly in response to the recent decline in spring precipitation. Atmospheric and terrestrial thermal and dynamical processes over the TP affect the Asian monsoon at different scales. Recent evidence indicates substantial roles that mesoscale convective systems play in the TP’s precipitation as well as an association between soil moisture anomalies in the TP and the Indian monsoon. Moreover, an increase in geohazard events has been associated with recent environmental changes, some of which have had catastrophic consequences caused by glacial lake outbursts and landslides. Active debris flows are growing in both frequency of occurrences and spatial scale. Meanwhile, new types of disasters, such as the twin ice avalanches in Ali in 2016, are now appearing in the region. Adaptation and mitigation measures should be taken to help societies’ preparation for future environmental challenges. Some key issues for future TP studies are also discussed.

Full access