Search Results

You are looking at 21 - 30 of 43 items for

  • Author or Editor: Yukari N. Takayabu x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Yukari N. Takayabu, K-M. Lau, and C-H. Sui

Abstract

Detailed structure of the quasi-2-day oscillation observed in the active phase of the Madden–Julian oscillations during the intensive observation period of Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE IOP) was described. A variety of observational platforms is used including high-resolution GMS infrared histogram, rain-rate estimate from TOGA and MIT radar measurements, upper-air soundings, and boundary layer profiler winds from the Integrated Sounding System and surface data from the IMET buoy.

The quasi-2-day mode had a westward propagation speed of 12°–15° day −1, a horizontal wavelength of 25°–30° longitude. A coupling with the westward-propagating n = 1 inertio–gravity waves was hypothesized from the space–time power spectral distribution of the cloud field. The wind disturbance structure was consistent with the hypothesis. The vertical wave structure had an eastward phase tilt with height below 175 hPa and vice versa above, indicating the wave energy emanating from the upper troposphere.

Four stages in the life cycle of the oscillating cloud–circulation system were identified:. 1) the shallow convection stage with a duration time of 12 h, 2) the initial tower stage (9 h), 3) the mature stage (12 h), and 4) the decaying stage (15 h). Surface and boundary layer observations also showed substantial variation associated with the different stages in the life cycle. Results suggest that the timescale of quasi-2-day oscillation is determined by the time required by the lower-tropospheric moisture field to recover from the drying caused by deep convection.

Full access
Chuntao Liu, Shoichi Shige, Yukari N. Takayabu, and Edward Zipser

Abstract

Latent heating (LH) from precipitation systems with different sizes, depths, and convective intensities is quantified with 15 years of LH retrievals from version 7 Precipitation Radar (PR) products of the Tropical Rainfall Measuring Mission (TRMM). Organized precipitation systems, such as mesoscale convective systems (MCSs; precipitation area > 2000 km2), contribute to 88% of the LH above 7 km over tropical land and 95% over tropical oceans. LH over tropical land is mainly from convective precipitation, and has one vertical mode with a peak from 4 to 7 km. There are two vertical modes of LH over tropical oceans. The shallow mode from about 1 to 4 km results from small, shallow, and weak precipitation systems, and partially from congestus clouds with radar echo top between 5 and 8 km. The deep mode from 5 to 9 km is mainly from stratiform precipitation in MCSs.

MCSs of different regions and seasons have different LH vertical structure mainly due to the different proportion of stratiform precipitation. MCSs over ocean have a larger fraction of stratiform precipitation and a top-heavy LH structure. MCSs over land have a higher percentage of convective versus stratiform precipitation, which results in a relatively lower-level peak in LH compared to MCSs over the ocean. MCSs during monsoons have properties of LH in between those typical land and oceanic MCSs.

Consistent with the diurnal variation of precipitation, tropical land has a stronger LH diurnal variation than tropical oceans with peak LH in the late afternoon. Over tropical oceans in the early morning, the shallow mode of LH peaks slightly earlier than the deep mode. There are almost no diurnal changes of MCSs LH over oceans. However, the small convective systems over land contribute a significant amount of LH at all vertical levels in the afternoon, when the contribution of MCSs is small.

Full access
Nagio Hirota, Yukari N. Takayabu, Masaya Kato, and Sho Arakane

Abstract

Precipitation in excess of 100 mm h−1 in Hiroshima, Japan, on 19 August 2014, caused a flash flood that resulted in 75 deaths and destroyed 330 houses. This study examined the meteorological background of this fatal flood. During this event, considerable filamentary transport of water vapor from the Indochina Peninsula to the Japanese islands occurred, forming a so-called atmospheric river (AR). This AR had a deep structure with an amount of free tropospheric moisture comparable with that of the boundary layer. Furthermore, a cutoff low (COL), detached from the subtropical jet over the central Pacific, moved northwestward to the Japanese islands. Instability associated with the cold core of the COL and dynamical ascent induced in front of it, interacted with the free tropospheric moisture of the AR, which caused the considerable precipitation in Hiroshima. Moreover, the mountains of the Japanese islands played a role in localizing the precipitation in Hiroshima. These roles were separately evaluated on the basis of sensitivity experiments with a cloud-resolving model.

Full access
Ayako Seiki, Yukari N. Takayabu, Takuya Hasegawa, and Kunio Yoneyama

Abstract

The lack of westerly wind bursts (WWBs) when atmospheric intraseasonal variability (ISV) events occur from boreal spring to autumn is investigated by comparing two types of El Niño years with unmaterialized El Niño (UEN) years. Although high ocean heat content buildup and several ISV events propagating eastward are observed in all three types of years, few WWBs accompany these in the UEN years. The eddy kinetic energy budget analysis based on ISV shows that mean westerly winds in the lower troposphere facilitate the development of eddy disturbances, including WWBs, through convergence and meridional shear of zonal winds. In the UEN years, these westerly winds are retracted westward and do not reach the equatorial central Pacific mainly as a result of interannual components. In addition, positive sea surface temperature anomalies in the western Pacific, which are conducive to active convection, spread widely in a meridional direction centered on 15°N. Both westward-retracted mean westerlies and off-equatorial warming enhance off-equatorial eddies, which result in a reduction in equatorial eddies such as WWBs. The characteristics of the UEN years are significantly different from those observed during the eastern Pacific El Niño (EP-EN) years, which are characterized by anomalous cooling (warming) and suppressed (enhanced) convective eddies in the off-equatorial (equatorial) western Pacific. The central Pacific El Niño years show mixed features during both EP-EN and UEN years. Different background states not only in the equatorial region but also in the off-equatorial region can be a reason for the lack of WWBs in the UEN years.

Full access
Chie Yokoyama, Yukari N. Takayabu, Osamu Arakawa, and Tomoaki Ose

Abstract

This study estimates future changes in the early summer precipitation characteristics around Japan using changes in the large-scale environment, by combining Global Precipitation Measurement precipitation radar observations and phase 5 of the Coupled Models Intercomparison Project climate model large-scale projections. Analyzing satellite-based data, we first relate precipitation in three types of rain events (small, organized, and midlatitude), which are identified via their characteristics, to the large-scale environment. Two environmental fields are chosen to determine the large-scale conditions of the precipitation: the sea surface temperature and the midlevel large-scale vertical velocity. The former is related to the lower-tropospheric thermal instability, while the latter affects precipitation via moistening/drying of the midtroposphere. Consequently, favorable conditions differ between the three types in terms of these two environmental fields. Using these precipitation–environment relationships, we then reconstruct the precipitation distributions for each type with reference to the two environmental indices in climate models for the present and future climates. Future changes in the reconstructed precipitation are found to vary widely between the three types in association with the large-scale environment. In more than 90% of models, the region affected by organized-type precipitation will expand northward, leading to a substantial increase in this type of precipitation near Japan along the Sea of Japan, and in northern and eastern Japan on the Pacific side, where its present amount is relatively small. This result suggests an elevated risk of heavy rainfall in those regions because the maximum precipitation intensity is more intense in organized-type precipitation than in the other two types.

Open access
Yukari N. Takayabu, Shoichi Shige, Wei-Kuo Tao, and Nagio Hirota

Abstract

Three-dimensional distributions of the apparent heat source (Q 1) − radiative heating (QR) estimated from Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) utilizing the spectral latent heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated Q 1QR averaged over the tropical oceans is estimated as ∼72.6 J s−1 (∼2.51 mm day−1) and that over tropical land is ∼73.7 J s−1 (∼2.55 mm day−1) for 30°N–30°S. It is shown that nondrizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems: deep systems and congestus. A rough estimate of the shallow-heating contribution against the total heating is about 46.7% for the average tropical oceans, which is substantially larger than the 23.7% over tropical land.

Although cumulus congestus heating linearly correlates with SST, deep-mode heating is dynamically bounded by large-scale subsidence. It is notable that a substantial amount of rain, as large as 2.38 mm day−1 on average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that, even in the region with SSTs warmer than 28°C, large-scale subsidence effectively suppresses the deep convection, with the remaining heating by congestus clouds.

The results support that the entrainment of mid–lower-tropospheric dry air, which accompanies the large-scale subsidence, is the major factor suppressing the deep convection. Therefore, a representation of the realistic entrainment is very important for proper reproduction of precipitation distribution and the resultant large-scale circulation.

Full access
Shoichi Shige, Yukari N. Takayabu, Wei-Kuo Tao, and Chung-Lin Shie

Abstract

The spectral latent heating (SLH) algorithm was developed for the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) in Part I of this study. The method uses PR information [precipitation-top height (PTH), precipitation rates at the surface and melting level, and rain type] to select heating profiles from lookup tables. Heating-profile lookup tables for the three rain types—convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)—were derived from numerical simulations of tropical cloud systems from the Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) utilizing a cloud-resolving model (CRM). To assess its global application to TRMM PR data, the universality of the lookup tables from the TOGA COARE simulations is examined in this paper. Heating profiles are reconstructed from CRM-simulated parameters (i.e., PTH, precipitation rates at the surface and melting level, and rain type) and are compared with the true CRM-simulated heating profiles, which are computed directly by the model thermodynamic equation. CRM-simulated data from the Global Atmospheric Research Program Atlantic Tropical Experiment (GATE), South China Sea Monsoon Experiment (SCSMEX), and Kwajalein Experiment (KWAJEX) are used as a consistency check. The consistency check reveals discrepancies between the SLH-reconstructed and Goddard Cumulus Ensemble (GCE)-simulated heating above the melting level in the convective region and at the melting level in the stratiform region that are attributable to the TOGA COARE table. Discrepancies in the convective region are due to differences in the vertical distribution of deep convective heating due to the relative importance of liquid and ice water processes, which varies from case to case. Discrepancies in the stratiform region are due to differences in the level separating upper-level heating and lower-level cooling. Based on these results, improvements were made to the SLH algorithm. Convective heating retrieval is now separated into upper-level heating due to ice processes and lower-level heating due to liquid water processes. In the stratiform region, the heating profile is shifted up or down by matching the melting level in the TOGA COARE lookup table with the observed one. Consistency checks indicate the revised SLH algorithm performs much better for both the convective and stratiform components than does the original one. The revised SLH algorithm was applied to PR data, and the results were compared with heating profiles derived diagnostically from SCSMEX sounding data. Key features of the vertical profiles agree well—in particular, the level of maximum heating. The revised SLH algorithm was also applied to PR data for February 1998 and February 1999. The results are compared with heating profiles derived by the convective–stratiform heating (CSH) algorithm. Because observed information on precipitation depth is used in addition to precipitation type and intensity, differences between shallow and deep convection are more distinct in the SLH algorithm in comparison with the CSH algorithm.

Full access
Masafumi Hirose, Yukari N. Takayabu, Atsushi Hamada, Shoichi Shige, and Munehisa K. Yamamoto

Abstract

Observations of the Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR) over 16 yr yielded hundreds of large precipitation systems (≥100 km) for each 0.1° grid over major rainy regions. More than 90% of the rainfall was attributed to large systems over certain midlatitude regions such as La Plata basin and the East China Sea. The accumulation of high-impact snapshots reduced the significant spatial fluctuation of the rain fraction arising from large systems and allowed the obtaining of sharp images of the geographic rainfall pattern. Widespread systems were undetected over low-rainfall areas such as regions off Peru. Conversely, infrequent large systems brought a significant percentage of rainfall over semiarid tropics such as the Sahel. This demonstrated an increased need for regional sampling of extreme phenomena. Differences in data collected over a period of 16 yr were used to examine sampling adequacy. The results indicated that more than 10% of the 0.1°-scale sampling error accounted for half of the TRMM domain even for a 10-yr data accumulation period. Rainfall at the 0.1° scale was negatively biased in the first few years for over more than half of the areas because of a lack of high-impact samples. The areal fraction of the 0.1°-scale climatology with a 50% accuracy exceeded 95% in the ninth year and in the fifth year for those areas with rainfall >2 mm day−1. A monotonic increase in the degree of similarity of finescale rainfall to the best estimate with an accuracy of 10% illustrated the need for further sampling.

Full access
Kaya Kanemaru, Takuji Kubota, Toshio Iguchi, Yukari N. Takayabu, and Riko Oki

Abstract

Precipitation observation with the Tropical Rainfall Measuring Mission’s (TRMM’s) precipitation radar (PR) lasted for more than 17 years. To study the changes in the water and energy cycle related to interannual and decadal variabilities of climate, homogeneity of long-term PR data is essential. The aim of the study is to develop a precipitation climate record from the 17-yr PR observation. The focus was on mitigating the discontinuities associated with the switching to redundant electronics in the PR in June 2009. In version 7 of the level-1 PR product, a discontinuity in noise power is found at this timing, indicating a change in the signal-to-noise ratio. To mitigate the effect of this discontinuity on climate studies, the noise power of the B-side PR obtained after June 2009 is artificially increased to match that of the A-side PR. Simulation results show that the storm height and the precipitation frequency detected by the PR relatively decrease by 2.17% and 5.15% in the TRMM coverage area (35°S–35°N), respectively, and that the obvious discontinuity of the time series by the storm height and the precipitation fraction caused by the switching to the redundancy electronics is mitigated. Differences in the statistics of other precipitation parameters caused by the switching are also mitigated. The unconditional precipitation rate derived from the adjusted data obtained over the TRMM coverage area decreases by 0.90% as compared with that determined from the original data. This decrease is mainly caused by reductions in the detection of light precipitation.

Full access
Tomoki Miyakawa, Yukari N. Takayabu, Tomoe Nasuno, Hiroaki Miura, Masaki Satoh, and Mitchell W. Moncrieff

Abstract

The convective momentum transport (CMT) properties of 13 215 rainbands within a Madden–Julian oscillation (MJO) event simulated by a global nonhydrostatic model are examined. CMT vectors, which represent horizontal accelerations to the mean winds due to momentum flux convergences of deviation winds, are derived for each rainband. The CMT vectors are composited according to their locations relative to the MJO center.

While a similar number of rainbands are detected in the eastern and western halves of the MJO convective envelope, CMT vectors with large zonal components are most plentiful between 0° and 20° to the west of the MJO center. The zonal components of the CMT vectors exhibit a coherent directionality and have a well-organized three-layer structure: positive near the surface, negative in the low to midtroposphere, and positive in the upper troposphere. In the low to midtroposphere, where the longitudinal difference in the mean zonal wind across the MJO is 10 m s−1 on average, the net acceleration due to CMT contributes about −16 m s−1.

Possible roles of the CMT are proposed. First, the CMT delays the eastward progress of the low- to midtroposphere westerly wind, hence delaying the eastward migration of the convectively favorable region and reducing the propagation speed of the entire MJO. Second, the CMT tilts the MJO flow structure westward with height. Furthermore, the CMT counteracts the momentum transport due to large-scale flows that result from the tilted structure.

Full access