Search Results

You are looking at 31 - 31 of 31 items for

  • Author or Editor: C. S. B. Grimmond x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
X. Liang
,
S. Miao
,
J. Li
,
R. Bornstein
,
X. Zhang
,
Y. Gao
,
F. Chen
,
X. Cao
,
Z. Cheng
,
C. Clements
,
W. Dabberdt
,
A. Ding
,
D. Ding
,
J. J. Dou
,
J. X. Dou
,
Y. Dou
,
C. S. B. Grimmond
,
J. E. González-Cruz
,
J. He
,
M. Huang
,
X. Huang
,
S. Ju
,
Q. Li
,
D. Niyogi
,
J. Quan
,
J. Sun
,
J. Z. Sun
,
M. Yu
,
J. Zhang
,
Y. Zhang
,
X. Zhao
,
Z. Zheng
, and
M. Zhou

Abstract

Urbanization modifies atmospheric energy and moisture balances, forming distinct features [e.g., urban heat islands (UHIs) and enhanced or decreased precipitation]. These produce significant challenges to science and society, including rapid and intense flooding, heat waves strengthened by UHIs, and air pollutant haze. The Study of Urban Impacts on Rainfall and Fog/Haze (SURF) has brought together international expertise on observations and modeling, meteorology and atmospheric chemistry, and research and operational forecasting. The SURF overall science objective is a better understanding of urban, terrain, convection, and aerosol interactions for improved forecast accuracy. Specific objectives include a) promoting cooperative international research to improve understanding of urban summer convective precipitation and winter particulate episodes via extensive field studies, b) improving high-resolution urban weather and air quality forecast models, and c) enhancing urban weather forecasts for societal applications (e.g., health, energy, hydrologic, climate change, air quality, planning, and emergency response management). Preliminary SURF observational and modeling results are shown (i.e., turbulent PBL structure, bifurcating thunderstorms, haze events, urban canopy model development, and model forecast evaluation).

Full access