Search Results

You are looking at 31 - 34 of 34 items for

  • Author or Editor: Jin-Yi Yu x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Zeng-Zhen Hu
,
Arun Kumar
,
Bohua Huang
,
Jieshun Zhu
,
Michelle L’Heureux
,
Michael J. McPhaden
, and
Jin-Yi Yu

Abstract

Following the interdecadal shift of El Niño–Southern Oscillation (ENSO) properties that occurred in 1976/77, another regime shift happened in 1999/2000 that featured a decrease of variability and an increase in ENSO frequency. Specifically, the frequency spectrum of Niño-3.4 sea surface temperature shifted from dominant variations at quasi-quadrennial (~4 yr) periods during 1979–99 to weaker fluctuations at quasi-biennial (~2 yr) periods during 2000–18. Also, the spectrum of warm water volume (WWV) index had almost no peak in 2000–18, implying a nearly white noise process. The regime shift was associated with an enhanced zonal gradient of the mean state, a westward shift in the atmosphere–ocean coupling in the tropical Pacific, and an increase in the static stability of the troposphere. This shift had several important implications. The whitening of the subsurface ocean temperature led to a breakdown of the relationship between WWV and ENSO, reducing the efficacy of WWV as a key predictor for ENSO and thus leading to a decrease in ENSO prediction skill. Another consequence of the higher ENSO frequency after 1999/2000 was that the forecasted peak of sea surface temperature anomaly often lagged that observed by several months, and the lag increased with the lead time. The ENSO regime shift may have altered ENSO influences on extratropical climate. Thus, the regime shift of ENSO in 1999/2000 as well as the model default may account for the higher false alarm and lower skill in predicting ENSO since 1999/2000.

Free access
I.-I. Lin
,
Robert F. Rogers
,
Hsiao-Ching Huang
,
Yi-Chun Liao
,
Derrick Herndon
,
Jin-Yi Yu
,
Ya-Ting Chang
,
Jun A. Zhang
,
Christina M. Patricola
,
Iam-Fei Pun
, and
Chun-Chi Lien

Abstract

Devastating Japan in October 2019, Supertyphoon (STY) Hagibis was an important typhoon in the history of the Pacific. A striking feature of Hagibis was its explosive rapid intensification (RI). In 24 h, Hagibis intensified by 100 knots (kt; 1 kt ≈ 0.51 m s−1), making it one of the fastest-intensifying typhoons ever observed. After RI, Hagibis’s intensification stalled. Using the current typhoon intensity record holder, i.e., STY Haiyan (2013), as a benchmark, this work explores the intensity evolution differences of these two high-impact STYs. We found that the extremely high prestorm sea surface temperature reaching 30.5°C, deep/warm prestorm ocean heat content reaching 160 kJ cm−2, fast forward storm motion of ∼8 m s−1, small during-storm ocean cooling effect of ∼0.5°C, significant thunderstorm activity at its center, and rapid eyewall contraction were all important contributors to Hagibis’s impressive intensification. There was 36% more air–sea flux for Hagibis’s RI than for Haiyan’s. After its spectacular RI, Hagibis’s intensification stopped, despite favorable environments. Haiyan, by contrast, continued to intensify, reaching its record-breaking intensity of 170 kt. A key finding here is the multiple pathways that storm size affected the intensity evolution for both typhoons. After RI, Hagibis experienced a major size expansion, becoming the largest typhoon on record in the Pacific. This size enlargement, combined with a reduction in storm translational speed, induced stronger ocean cooling that reduced ocean flux and hindered intensification. The large storm size also contributed to slower eyewall replacement cycles (ERCs), which prolonged the negative impact of the ERC on intensification.

Full access
Antonietta Capotondi
,
Andrew T. Wittenberg
,
Matthew Newman
,
Emanuele Di Lorenzo
,
Jin-Yi Yu
,
Pascale Braconnot
,
Julia Cole
,
Boris Dewitte
,
Benjamin Giese
,
Eric Guilyardi
,
Fei-Fei Jin
,
Kristopher Karnauskas
,
Benjamin Kirtman
,
Tong Lee
,
Niklas Schneider
,
Yan Xue
, and
Sang-Wook Yeh

Abstract

El Niño–Southern Oscillation (ENSO) is a naturally occurring mode of tropical Pacific variability, with global impacts on society and natural ecosystems. While it has long been known that El Niño events display a diverse range of amplitudes, triggers, spatial patterns, and life cycles, the realization that ENSO’s impacts can be highly sensitive to this event-to-event diversity is driving a renewed interest in the subject. This paper surveys our current state of knowledge of ENSO diversity, identifies key gaps in understanding, and outlines some promising future research directions.

Full access
Justin Sheffield
,
Suzana J. Camargo
,
Rong Fu
,
Qi Hu
,
Xianan Jiang
,
Nathaniel Johnson
,
Kristopher B. Karnauskas
,
Seon Tae Kim
,
Jim Kinter
,
Sanjiv Kumar
,
Baird Langenbrunner
,
Eric Maloney
,
Annarita Mariotti
,
Joyce E. Meyerson
,
J. David Neelin
,
Sumant Nigam
,
Zaitao Pan
,
Alfredo Ruiz-Barradas
,
Richard Seager
,
Yolande L. Serra
,
De-Zheng Sun
,
Chunzai Wang
,
Shang-Ping Xie
,
Jin-Yi Yu
,
Tao Zhang
, and
Ming Zhao

Abstract

This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability.

Full access