Search Results
You are looking at 31 - 40 of 51 items for
- Author or Editor: Kevin Knupp x
- Refine by Access: Content accessible to me x
Abstract
A visually impressive undular bore moved across much of Iowa on 2 October 2007, and video animations were captured by numerous Webcams. The bore was sampled very well by Doppler radar at close range, and also by the high-density mesoscale network of surface stations in place over Iowa and 1-min Automated Surface Observing System (ASOS) surface data at Des Moines, Iowa. Radar and surface observations are presented, along with a brief analysis of the structure of the bore.
Abstract
A visually impressive undular bore moved across much of Iowa on 2 October 2007, and video animations were captured by numerous Webcams. The bore was sampled very well by Doppler radar at close range, and also by the high-density mesoscale network of surface stations in place over Iowa and 1-min Automated Surface Observing System (ASOS) surface data at Des Moines, Iowa. Radar and surface observations are presented, along with a brief analysis of the structure of the bore.
Abstract
The evolution of a small, vigorous mesoscale convective system (MCS) over northern Alabama is described using Doppler radar, GOES satellite, surface mesonet, lightning, and sounding data. The MCS formed near noon in a relatively unstable environment having weak synoptic forcing and weak shear. The initiation of separate lines and clusters of deep convection occurred in regions exhibiting cumulus cloud streets, horizontal variations in stratocumulus cloud cover, and variations in inferred soil moisture. MCS growth via merger of storms within clusters and lines, and among the clusters, was accomplished largely through intersection of storm-scale and mesoscale outflow boundaries. The MCS maximum anvil area (∼60000 km2 at 220 K) and lifetime (8 h) were about 50% that of the typical Great Plains mesoscale convective complex (MCC).
Despite its smaller size, this MCS displayed many aspects that typify the mostly nocturnal Great Plains MCS. The precipitation output was highly variable due to the transient nature of the intense convective elements, many of which produced microbursts. The radar measurements documented the formation of a stratiform region along the trailing side of an intense convective line. This stratiform region formed as decaying convective cores coalesced, rather than through advection of precipitation particles directly from the convective region. Combined GOES IR imagery and radar reflectivity analyses within the stratiform region show a sinking anvil cloud top in the presence of increases in the vertical radar reflectivity gradient within the cloud during the maturation of the stratiform region.
During its intense developing stages, the MCS generated a peak cloud-to-ground (CG) flash rate of 2400 h−1, comparable to rates produced by larger MCCs. Early on, positive CG flashes were most prevalent around intense convective core regions exhibiting strong divergence at anvil level. During the latter stages, the emergence of positive CG was coincident with the formation of a prominent radar bright band within the stratiform region. Thus, a bipole was established, but its length was quite short at approximately 50 km, 25%–50% of the distance documented in other MCSs.
Abstract
The evolution of a small, vigorous mesoscale convective system (MCS) over northern Alabama is described using Doppler radar, GOES satellite, surface mesonet, lightning, and sounding data. The MCS formed near noon in a relatively unstable environment having weak synoptic forcing and weak shear. The initiation of separate lines and clusters of deep convection occurred in regions exhibiting cumulus cloud streets, horizontal variations in stratocumulus cloud cover, and variations in inferred soil moisture. MCS growth via merger of storms within clusters and lines, and among the clusters, was accomplished largely through intersection of storm-scale and mesoscale outflow boundaries. The MCS maximum anvil area (∼60000 km2 at 220 K) and lifetime (8 h) were about 50% that of the typical Great Plains mesoscale convective complex (MCC).
Despite its smaller size, this MCS displayed many aspects that typify the mostly nocturnal Great Plains MCS. The precipitation output was highly variable due to the transient nature of the intense convective elements, many of which produced microbursts. The radar measurements documented the formation of a stratiform region along the trailing side of an intense convective line. This stratiform region formed as decaying convective cores coalesced, rather than through advection of precipitation particles directly from the convective region. Combined GOES IR imagery and radar reflectivity analyses within the stratiform region show a sinking anvil cloud top in the presence of increases in the vertical radar reflectivity gradient within the cloud during the maturation of the stratiform region.
During its intense developing stages, the MCS generated a peak cloud-to-ground (CG) flash rate of 2400 h−1, comparable to rates produced by larger MCCs. Early on, positive CG flashes were most prevalent around intense convective core regions exhibiting strong divergence at anvil level. During the latter stages, the emergence of positive CG was coincident with the formation of a prominent radar bright band within the stratiform region. Thus, a bipole was established, but its length was quite short at approximately 50 km, 25%–50% of the distance documented in other MCSs.
Abstract
The evolution of the mesoscale flow and precipitation distribution are investigated for a small mesoscale convective system (MCS) that evolved in a nearly barotropic environment exhibiting moderate instability and weak wind shear. Observations primarily from a single Doppler radar detail the growth of the MCS from the merger of several clusters and lines of vigorous convective cells into a mature state consisting of a weaker convective line trailed by an expanding stratiform precipitation region. Analysis of radar reflectivity reveals that this stratiform region formed in situ in the presence of weak mesoscale updraft as decaying convective cores coalesced, rather than through rearward advection of ice particles directly from the convective region. In the absence of sufficient low-level shear, the MCS collapsed rapidly as it assumed the structure of the archetypal convective line and trailing stratiform precipitation region.
Velocity–azimuth displays reveal mesoscale updrafts of about 70 cm s−1 during the active convective stage. In the mature stratiform region, the lower-tropospheric mesoscale downdraft (∼40 cm s−1) exceeded the mesoscale updraft (∼10 cm s−1) above it, and the level separating the two was relatively high at 6.5 km, about 2 km above the 0°C level. As the MCS cloud-top anvil area colder than −52°C peaked near 60000 km2, the cloud top descended at rates of 20–40 cm s−1 despite weak but sustained mesoscale updraft within the upper part of the cloud.
A rear inflow jet was observed before convective activity peaked, remained strong while the deep convection diminished, and became the main flow feature as the MCS decayed. This jet subsided from approximately 7 km at the rear end to near the surface at the leading edge of the convection. A weaker ascending front-to-rear current was found above this rear inflow jet.
No midlevel mesoscale cyclonic vortex was apparent in the echo structure of the maturing MCS. Indirect estimates of mesoscale vorticity, based on Lagrangian conservation of radar reflectivity, indicate that cyclonic rotation was present in the mesoscale downdraft region, and anticyclonic rotation occurred aloft. The magnitude of this vorticity is about half the Coriolis parameter. A positive potential vorticity anomaly is found at midlevels within the MCS, and this anomaly intensifies in depth and in strength as the system matures. This growth is consistent with the diabatic heating profile estimated from a 1D cloud model.
Abstract
The evolution of the mesoscale flow and precipitation distribution are investigated for a small mesoscale convective system (MCS) that evolved in a nearly barotropic environment exhibiting moderate instability and weak wind shear. Observations primarily from a single Doppler radar detail the growth of the MCS from the merger of several clusters and lines of vigorous convective cells into a mature state consisting of a weaker convective line trailed by an expanding stratiform precipitation region. Analysis of radar reflectivity reveals that this stratiform region formed in situ in the presence of weak mesoscale updraft as decaying convective cores coalesced, rather than through rearward advection of ice particles directly from the convective region. In the absence of sufficient low-level shear, the MCS collapsed rapidly as it assumed the structure of the archetypal convective line and trailing stratiform precipitation region.
Velocity–azimuth displays reveal mesoscale updrafts of about 70 cm s−1 during the active convective stage. In the mature stratiform region, the lower-tropospheric mesoscale downdraft (∼40 cm s−1) exceeded the mesoscale updraft (∼10 cm s−1) above it, and the level separating the two was relatively high at 6.5 km, about 2 km above the 0°C level. As the MCS cloud-top anvil area colder than −52°C peaked near 60000 km2, the cloud top descended at rates of 20–40 cm s−1 despite weak but sustained mesoscale updraft within the upper part of the cloud.
A rear inflow jet was observed before convective activity peaked, remained strong while the deep convection diminished, and became the main flow feature as the MCS decayed. This jet subsided from approximately 7 km at the rear end to near the surface at the leading edge of the convection. A weaker ascending front-to-rear current was found above this rear inflow jet.
No midlevel mesoscale cyclonic vortex was apparent in the echo structure of the maturing MCS. Indirect estimates of mesoscale vorticity, based on Lagrangian conservation of radar reflectivity, indicate that cyclonic rotation was present in the mesoscale downdraft region, and anticyclonic rotation occurred aloft. The magnitude of this vorticity is about half the Coriolis parameter. A positive potential vorticity anomaly is found at midlevels within the MCS, and this anomaly intensifies in depth and in strength as the system matures. This growth is consistent with the diabatic heating profile estimated from a 1D cloud model.
Abstract
North Alabama is among the most tornado-prone regions in the United States and is composed of more spatially variable terrain and land cover than the frequently studied North American Great Plains region. Because of the high tornado frequency observed across north Alabama, there is a need to understand how land surface roughness heterogeneity influences tornadogenesis, particularly for weak-intensity tornadoes. This study investigates whether horizontal gradients in land surface roughness exist surrounding locations of tornadogenesis for weak (EF0–EF1) tornadoes. The existence of the horizontal gradients could lead to the generation of positive values of the vertical components of the 3D vorticity vector near the surface that may aid in the tornadogenesis process. In this study, surface roughness was estimated using parameterizations from the Noah land surface model with inputs from MODIS 500-m and Landsat 30-m data. Spatial variations in the parameterized roughness lengths were assessed using GIS-based grid and quadrant pattern analyses to quantify observed variation of land surface features surrounding tornadogenesis locations across spatial scales. This analysis determined that statistically significant horizontal gradients in surface roughness exist surrounding tornadogenesis locations.
Abstract
North Alabama is among the most tornado-prone regions in the United States and is composed of more spatially variable terrain and land cover than the frequently studied North American Great Plains region. Because of the high tornado frequency observed across north Alabama, there is a need to understand how land surface roughness heterogeneity influences tornadogenesis, particularly for weak-intensity tornadoes. This study investigates whether horizontal gradients in land surface roughness exist surrounding locations of tornadogenesis for weak (EF0–EF1) tornadoes. The existence of the horizontal gradients could lead to the generation of positive values of the vertical components of the 3D vorticity vector near the surface that may aid in the tornadogenesis process. In this study, surface roughness was estimated using parameterizations from the Noah land surface model with inputs from MODIS 500-m and Landsat 30-m data. Spatial variations in the parameterized roughness lengths were assessed using GIS-based grid and quadrant pattern analyses to quantify observed variation of land surface features surrounding tornadogenesis locations across spatial scales. This analysis determined that statistically significant horizontal gradients in surface roughness exist surrounding tornadogenesis locations.
Abstract
On 6 May 2007, an intense atmospheric undular bore moved over eastern Iowa. A “Webcam” in Tama, Iowa, captured dramatic images of the effects of the bore and associated gravity waves on cloud features, because its viewing angle was almost normal to the propagation direction of the waves. The time lapse of these images has become a well-known illustration of atmospheric gravity waves. The environment was favorable for bore formation, with a wave-reflecting unstable layer above a low-level stable layer. Surface pressure and wind data are correlated for the waves in the bore, and horizontal wind oscillations are also shown by Doppler radar data. Quantitative analysis of the time-lapse photography shows that the sky brightens in wave troughs because of subsidence and darkens in wave ridges because of ascent.
Abstract
On 6 May 2007, an intense atmospheric undular bore moved over eastern Iowa. A “Webcam” in Tama, Iowa, captured dramatic images of the effects of the bore and associated gravity waves on cloud features, because its viewing angle was almost normal to the propagation direction of the waves. The time lapse of these images has become a well-known illustration of atmospheric gravity waves. The environment was favorable for bore formation, with a wave-reflecting unstable layer above a low-level stable layer. Surface pressure and wind data are correlated for the waves in the bore, and horizontal wind oscillations are also shown by Doppler radar data. Quantitative analysis of the time-lapse photography shows that the sky brightens in wave troughs because of subsidence and darkens in wave ridges because of ascent.
Abstract
Ninety-four outflow boundary (OB) collisions were documented in north-central Alabama over the summers of 2005–07 using the Advanced Radar for Meteorological and Operational Research (ARMOR) dual-polarimetric radar located at the Huntsville, Alabama, airport. These data were used to extend and verify previous research and to look for new correlations among the various factors that lead to convective initiation (CI) from OB collisions more frequently. For this study, CI is defined as the first occurrence of a ≥35-dBZ radar echo at an elevation angle of 0.8° and within 10 km of the point of collision, from a convective cloud. The radar reflectivity and angle of collision between both OBs along with time of day at which CI occurs most often were analyzed. Also, the presence of cumulus clouds along either/both OBs, or within the area of collision, was examined using Geostationary Operational Environmental Satellite-12 (GOES-12) visible imagery. A more detailed analysis of 23 of the 94 OBs that passed over the Mobile Integrated Profiling System instruments examines the relation among radar reflectivity, updraft magnitude, and water vapor enhancements. This analysis indicates that OB updraft magnitude is positively correlated with OB reflectivity factor. The main findings are that when OBs collide in a more head-on manner, when both colliding OBs have radar reflectivity values of 15 dBZ or greater, or when cumulus clouds preexist along at least one OB, CI is produced at a greater rate. These results, using a much larger dataset than had previously been used for colliding OBs, are subsequently compared with two existing studies.
Abstract
Ninety-four outflow boundary (OB) collisions were documented in north-central Alabama over the summers of 2005–07 using the Advanced Radar for Meteorological and Operational Research (ARMOR) dual-polarimetric radar located at the Huntsville, Alabama, airport. These data were used to extend and verify previous research and to look for new correlations among the various factors that lead to convective initiation (CI) from OB collisions more frequently. For this study, CI is defined as the first occurrence of a ≥35-dBZ radar echo at an elevation angle of 0.8° and within 10 km of the point of collision, from a convective cloud. The radar reflectivity and angle of collision between both OBs along with time of day at which CI occurs most often were analyzed. Also, the presence of cumulus clouds along either/both OBs, or within the area of collision, was examined using Geostationary Operational Environmental Satellite-12 (GOES-12) visible imagery. A more detailed analysis of 23 of the 94 OBs that passed over the Mobile Integrated Profiling System instruments examines the relation among radar reflectivity, updraft magnitude, and water vapor enhancements. This analysis indicates that OB updraft magnitude is positively correlated with OB reflectivity factor. The main findings are that when OBs collide in a more head-on manner, when both colliding OBs have radar reflectivity values of 15 dBZ or greater, or when cumulus clouds preexist along at least one OB, CI is produced at a greater rate. These results, using a much larger dataset than had previously been used for colliding OBs, are subsequently compared with two existing studies.
Abstract
A total solar eclipse traversed the continental United States on 21 August 2017. It was the first such event in 99 years and provided a rare opportunity to observe the atmospheric response from a variety of instrumented observational platforms. This paper discusses the high-quality observations collected by the Kentucky Mesonet (www.kymesonet.org), a research-grade meteorological and climatological observation network consisting of 72 stations and measuring air temperature, precipitation, relative humidity, solar radiation, wind speed, and wind direction. The network samples the atmosphere, for most variables, every 3 s and then calculates and records observations every 5 min. During the total solar eclipse, these observations were complemented by observations collected from three atmospheric profiling systems positioned in the path of the eclipse and operated by the University of Alabama in Huntsville (UAH). Observational data demonstrate that solar radiation at the surface dropped from >800 to 0 W m‒2, the air temperature decreased by about 4.5°C, and, most interestingly, a land-breeze–sea-breeze-type wind developed. In addition, due to the high density of observations, the network recorded a detailed representation of the spatial variation of surface meteorology. The UAH profiling system captured collapse and reformation of the planetary boundary layer and related changes during the total solar eclipse.
Abstract
A total solar eclipse traversed the continental United States on 21 August 2017. It was the first such event in 99 years and provided a rare opportunity to observe the atmospheric response from a variety of instrumented observational platforms. This paper discusses the high-quality observations collected by the Kentucky Mesonet (www.kymesonet.org), a research-grade meteorological and climatological observation network consisting of 72 stations and measuring air temperature, precipitation, relative humidity, solar radiation, wind speed, and wind direction. The network samples the atmosphere, for most variables, every 3 s and then calculates and records observations every 5 min. During the total solar eclipse, these observations were complemented by observations collected from three atmospheric profiling systems positioned in the path of the eclipse and operated by the University of Alabama in Huntsville (UAH). Observational data demonstrate that solar radiation at the surface dropped from >800 to 0 W m‒2, the air temperature decreased by about 4.5°C, and, most interestingly, a land-breeze–sea-breeze-type wind developed. In addition, due to the high density of observations, the network recorded a detailed representation of the spatial variation of surface meteorology. The UAH profiling system captured collapse and reformation of the planetary boundary layer and related changes during the total solar eclipse.
Abstract
Theoretical plume growth rates depend upon the atmospheric spatial energy spectrum. Current grid-based numerical models generally resolve large-scale (synoptic) energy, while planetary boundary layer turbulence is parameterized. Energy at intermediate scales is often neglected. In this study, boundary layer radar profilers are used to examine the temporal energy spectrum, which can provide information about the atmospheric structure affecting plume growth rates. A boundary layer model (BLM) into which the radar information has been assimilated is used to drive a Lagrangian particle model (LPM) that is subsequently employed to examine plume growth rates. Profiler and aircraft data taken during the 1995 Southern Oxidants Study in Nashville, Tennessee, are used in the model study for assimilation and evaluation. The results show that the BLM without assimilation significantly underestimates the strength of the diurnal–inertial spectral peak, which in turn causes an underestimate of plume spread. Comparison with measures of plume width from aircraft data also shows that assimilation of radar information greatly improves plume spread rates predicted by the LPM.
Abstract
Theoretical plume growth rates depend upon the atmospheric spatial energy spectrum. Current grid-based numerical models generally resolve large-scale (synoptic) energy, while planetary boundary layer turbulence is parameterized. Energy at intermediate scales is often neglected. In this study, boundary layer radar profilers are used to examine the temporal energy spectrum, which can provide information about the atmospheric structure affecting plume growth rates. A boundary layer model (BLM) into which the radar information has been assimilated is used to drive a Lagrangian particle model (LPM) that is subsequently employed to examine plume growth rates. Profiler and aircraft data taken during the 1995 Southern Oxidants Study in Nashville, Tennessee, are used in the model study for assimilation and evaluation. The results show that the BLM without assimilation significantly underestimates the strength of the diurnal–inertial spectral peak, which in turn causes an underestimate of plume spread. Comparison with measures of plume width from aircraft data also shows that assimilation of radar information greatly improves plume spread rates predicted by the LPM.
Abstract
During the Ontario Winter Lake-effect Systems (OWLeS) field campaign, 12 long-lake-axis-parallel (LLAP) snowband events were sampled. Misovortices occurred in 11 of these events, with characteristic diameters of ~800 m, differential velocities of ~11 m s−1, and spacing between vortices of ~3 km. A detailed observational analysis of one such snowband provided further insight on the processes governing misovortex genesis and evolution, adding to the growing body of knowledge of these intense snowband features. On 15–16 December 2013, a misovortex-producing snowband was exceptionally well sampled by ground-based OWLeS instrumentation, which allowed for integrated finescale dual-Doppler and surface thermodynamic analyses. Similar to other studies, horizontal shearing instability (HSI), coupled with stretching, was shown to be the primary genesis mechanism. The HSI location was influenced by snowband-generated boundaries and location of the Arctic front relative to the band. Surface temperature observations, available for the first time, indicated that the misovortices formed along a baroclinic zone. Enhanced mixing, higher radar reflectivity, and increased precipitation rate accompanied the vortices. As the snowband came ashore, OWLeS participants indicated an increase in snowfall and white out conditions with the passage of the snowband. A sharp, small-scale pressure drop, coupled with winds of ~16 m s−1, marked the passage of a misovortex and may be typical of snowband misovortices.
Abstract
During the Ontario Winter Lake-effect Systems (OWLeS) field campaign, 12 long-lake-axis-parallel (LLAP) snowband events were sampled. Misovortices occurred in 11 of these events, with characteristic diameters of ~800 m, differential velocities of ~11 m s−1, and spacing between vortices of ~3 km. A detailed observational analysis of one such snowband provided further insight on the processes governing misovortex genesis and evolution, adding to the growing body of knowledge of these intense snowband features. On 15–16 December 2013, a misovortex-producing snowband was exceptionally well sampled by ground-based OWLeS instrumentation, which allowed for integrated finescale dual-Doppler and surface thermodynamic analyses. Similar to other studies, horizontal shearing instability (HSI), coupled with stretching, was shown to be the primary genesis mechanism. The HSI location was influenced by snowband-generated boundaries and location of the Arctic front relative to the band. Surface temperature observations, available for the first time, indicated that the misovortices formed along a baroclinic zone. Enhanced mixing, higher radar reflectivity, and increased precipitation rate accompanied the vortices. As the snowband came ashore, OWLeS participants indicated an increase in snowfall and white out conditions with the passage of the snowband. A sharp, small-scale pressure drop, coupled with winds of ~16 m s−1, marked the passage of a misovortex and may be typical of snowband misovortices.