Search Results
You are looking at 41 - 50 of 51 items for
- Author or Editor: Kevin Knupp x
- Refine by Access: Content accessible to me x
Abstract
The University of Alabama in Huntsville Mobile Integrated Profiling System 915-MHz profiler was deployed in January and February of 2004 to measure vertical air velocities in finescale precipitation bands in winter cyclones. The profiler was placed to sample the “wraparound” quadrant of three winter cyclones in the central and southern United States, and it obtained high-resolution measurements of the vertical structure of a series of bands in each storm. The data revealed bands that were up to 6 km deep, 10–50 km wide, and spaced about 5–20 km apart. Measurements of vertical air motion w within these bands were retrieved from the Doppler spectra using the lower-bound method, adapted to account for the effects of spectral broadening caused by the horizontal wind, wind shear, and turbulence. Derived vertical air motions ranged from −4.3 to 6.7 m s−1, with an uncertainty of about ±0.6 m s−1. Approximately 29% of the 1515 total derived values were negative, 35% exceeded 1 m s−1, and 9% exceeded 2.0 m s−1. These values are consistent with studies in the Pacific Northwest, except that more extreme values were observed in one band than have been previously reported. There was a high correlation between values of signal-to-noise ratio (SNR) and w within each band (0.60 ≤ r ≤ 0.85), in the composite of bands from each cyclone (0.59 ≤ r ≤ 0.79), and in the overall analysis (r = 0.68). The strongest updrafts were typically between 2.0 and 4.0 m s−1 and were located near the center of each band in regions of high SNR. Regions of downdrafts within the bands had maximum values between −1.0 and −4.3 m s−1 and were typically located along the edges of the bands in regions of low SNR. These results are consistent with snow growth and sublimation processes. The magnitudes of the vertical velocities in the core of the bands were comparable to theoretical predictions for moist symmetric instability (MSI) under inviscid conditions but would appear to be somewhat larger than expected for MSI when turbulent mixing is considered, suggesting that other instabilities, such as potential instability, may have contributed to the band development in these storms.
Abstract
The University of Alabama in Huntsville Mobile Integrated Profiling System 915-MHz profiler was deployed in January and February of 2004 to measure vertical air velocities in finescale precipitation bands in winter cyclones. The profiler was placed to sample the “wraparound” quadrant of three winter cyclones in the central and southern United States, and it obtained high-resolution measurements of the vertical structure of a series of bands in each storm. The data revealed bands that were up to 6 km deep, 10–50 km wide, and spaced about 5–20 km apart. Measurements of vertical air motion w within these bands were retrieved from the Doppler spectra using the lower-bound method, adapted to account for the effects of spectral broadening caused by the horizontal wind, wind shear, and turbulence. Derived vertical air motions ranged from −4.3 to 6.7 m s−1, with an uncertainty of about ±0.6 m s−1. Approximately 29% of the 1515 total derived values were negative, 35% exceeded 1 m s−1, and 9% exceeded 2.0 m s−1. These values are consistent with studies in the Pacific Northwest, except that more extreme values were observed in one band than have been previously reported. There was a high correlation between values of signal-to-noise ratio (SNR) and w within each band (0.60 ≤ r ≤ 0.85), in the composite of bands from each cyclone (0.59 ≤ r ≤ 0.79), and in the overall analysis (r = 0.68). The strongest updrafts were typically between 2.0 and 4.0 m s−1 and were located near the center of each band in regions of high SNR. Regions of downdrafts within the bands had maximum values between −1.0 and −4.3 m s−1 and were typically located along the edges of the bands in regions of low SNR. These results are consistent with snow growth and sublimation processes. The magnitudes of the vertical velocities in the core of the bands were comparable to theoretical predictions for moist symmetric instability (MSI) under inviscid conditions but would appear to be somewhat larger than expected for MSI when turbulent mixing is considered, suggesting that other instabilities, such as potential instability, may have contributed to the band development in these storms.
Since the successful tornado forecast at Tinker AFB in 1948 paved the way for the issuance of tornado warnings, the science of tornado detection and forecasting has advanced greatly. However, tornado warnings must be disseminated to the public to be of any use. The Texas tornado warning conferences in 1953 began to develop the framework for a modern tornado warning system and included radar detection of tornadoes, a spotter network, and improved communications between the U.S. Weather Bureau, spotters, and public officials, allowing more timely warnings and dissemination of those warnings to the public.
Commercial radio and television are a main source of warnings for many, and the delivery methods on TV have changed much since 1960. NOAA Weather Radio (NWR) was launched after the 1974 Super Outbreak of tornadoes, with the most important feature being the tone alert that allowed receivers to alert people even when the radio broadcast was turned off. Today, NWR reaches most of the U.S. population, and Specific Area Message Encoding technology has improved its warning precision. Outdoor warning sirens, originally designed for use in enemy attack, were made available for use during tornado warnings around 1970.
“Storm based” warnings, adopted by the National Weather Service in 2007, replaced countybased warnings and greatly reduce the warning area. As communications advances continue, tornado warnings will eventually be delivered to precise locations, using GPS and other location technology, through cellular telephones, outdoor sirens, e-mails, and digital television, in addition to NWR.
Since the successful tornado forecast at Tinker AFB in 1948 paved the way for the issuance of tornado warnings, the science of tornado detection and forecasting has advanced greatly. However, tornado warnings must be disseminated to the public to be of any use. The Texas tornado warning conferences in 1953 began to develop the framework for a modern tornado warning system and included radar detection of tornadoes, a spotter network, and improved communications between the U.S. Weather Bureau, spotters, and public officials, allowing more timely warnings and dissemination of those warnings to the public.
Commercial radio and television are a main source of warnings for many, and the delivery methods on TV have changed much since 1960. NOAA Weather Radio (NWR) was launched after the 1974 Super Outbreak of tornadoes, with the most important feature being the tone alert that allowed receivers to alert people even when the radio broadcast was turned off. Today, NWR reaches most of the U.S. population, and Specific Area Message Encoding technology has improved its warning precision. Outdoor warning sirens, originally designed for use in enemy attack, were made available for use during tornado warnings around 1970.
“Storm based” warnings, adopted by the National Weather Service in 2007, replaced countybased warnings and greatly reduce the warning area. As communications advances continue, tornado warnings will eventually be delivered to precise locations, using GPS and other location technology, through cellular telephones, outdoor sirens, e-mails, and digital television, in addition to NWR.
Abstract
The Sand Mountain and Lookout Mountain Plateaus in northeastern Alabama have been established as a regional relative maximum in tornadogenesis reports within the southeastern United States. Investigation of long-term surface datasets has revealed (i) stronger and more backed winds atop Sand Mountain than over the Tennessee Valley, and (ii) measured cloud-base heights are lower to the surface atop Sand Mountain than over the Tennessee Valley. These observations suggest that low-level wind shear and lifting condensation level (LCL) height changes may lead to conditions more favorable for tornadogenesis atop the plateaus than over the Tennessee Valley. However, prior to fall 2016, no intensive observations had been made to further investigate low-level flow or thermodynamic changes in the topography of northeastern Alabama. This paper provides detailed analysis of observations gathered during VORTEX-SE field campaign cases from fall 2016 through spring 2019. These observations indicate that downslope winds form along the northwest edge of Sand Mountain in at least some severe storm environments in northeastern Alabama. Wind profiles gathered across northeastern Alabama indicate that low-level helicity changes can be substantial over small distances across different areas of the topographic system. LCL height changes often scale to changes in land elevation, which can be on the order of 200–300 m across northeastern Alabama.
Abstract
The Sand Mountain and Lookout Mountain Plateaus in northeastern Alabama have been established as a regional relative maximum in tornadogenesis reports within the southeastern United States. Investigation of long-term surface datasets has revealed (i) stronger and more backed winds atop Sand Mountain than over the Tennessee Valley, and (ii) measured cloud-base heights are lower to the surface atop Sand Mountain than over the Tennessee Valley. These observations suggest that low-level wind shear and lifting condensation level (LCL) height changes may lead to conditions more favorable for tornadogenesis atop the plateaus than over the Tennessee Valley. However, prior to fall 2016, no intensive observations had been made to further investigate low-level flow or thermodynamic changes in the topography of northeastern Alabama. This paper provides detailed analysis of observations gathered during VORTEX-SE field campaign cases from fall 2016 through spring 2019. These observations indicate that downslope winds form along the northwest edge of Sand Mountain in at least some severe storm environments in northeastern Alabama. Wind profiles gathered across northeastern Alabama indicate that low-level helicity changes can be substantial over small distances across different areas of the topographic system. LCL height changes often scale to changes in land elevation, which can be on the order of 200–300 m across northeastern Alabama.
Abstract
Since the advent of dual-polarization radar, methods of classifying hydrometeors by type from measured polarization variables have been developed. The deterministic approach of existing hydrometeor classification algorithms of assigning only one dominant habit to each radar sample volume does not properly consider the distribution of habits present in that volume, however. During the Profiling of Winter Storms field campaign, the “NSF/NCAR C-130” aircraft, equipped with in situ microphysical probes, made multiple passes through the comma heads of two cyclones as the Mobile Alabama X-band dual-polarization radar performed range–height indicator scans in the same plane as the C-130 flight track. On 14–15 February and 21–22 February 2010, 579 and 202 coincident data points, respectively, were identified when the plane was within 10 s (~1 km) of a radar gate. For all particles that occurred for times within different binned intervals of radar reflectivity Z HH and of differential reflectivity Z DR, the reflectivity-weighted contribution of each habit and the frequency distributions of axis ratio and sphericity were determined. This permitted the determination of habits that dominate particular Z HH and Z DR intervals; only 40% of the Z HH–Z DR bins were found to have a habit that contributes over 50% to the reflectivity in that bin. Of these bins, only 12% had a habit that contributes over 75% to the reflectivity. These findings show the general lack of dominance of a given habit for a particular Z HH and Z DR and suggest that determining the probability of specific habits in radar volumes may be more suitable than the deterministic methods currently used.
Abstract
Since the advent of dual-polarization radar, methods of classifying hydrometeors by type from measured polarization variables have been developed. The deterministic approach of existing hydrometeor classification algorithms of assigning only one dominant habit to each radar sample volume does not properly consider the distribution of habits present in that volume, however. During the Profiling of Winter Storms field campaign, the “NSF/NCAR C-130” aircraft, equipped with in situ microphysical probes, made multiple passes through the comma heads of two cyclones as the Mobile Alabama X-band dual-polarization radar performed range–height indicator scans in the same plane as the C-130 flight track. On 14–15 February and 21–22 February 2010, 579 and 202 coincident data points, respectively, were identified when the plane was within 10 s (~1 km) of a radar gate. For all particles that occurred for times within different binned intervals of radar reflectivity Z HH and of differential reflectivity Z DR, the reflectivity-weighted contribution of each habit and the frequency distributions of axis ratio and sphericity were determined. This permitted the determination of habits that dominate particular Z HH and Z DR intervals; only 40% of the Z HH–Z DR bins were found to have a habit that contributes over 50% to the reflectivity in that bin. Of these bins, only 12% had a habit that contributes over 75% to the reflectivity. These findings show the general lack of dominance of a given habit for a particular Z HH and Z DR and suggest that determining the probability of specific habits in radar volumes may be more suitable than the deterministic methods currently used.
Abstract
An airborne microwave temperature profiler (MTP) was deployed during the Texas 2000 Air Quality Study (TexAQS-2000) to make measurements of boundary layer thermal structure. An objective technique was developed and tested for estimating the mixed layer (ML) height from the MTP vertical temperature profiles. The technique identifies the ML height as a threshold increase of potential temperature from its minimum value within the boundary layer. To calibrate the technique and evaluate the usefulness of this approach, coincident estimates from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in situ aircraft measurements were compared with each other and with the MTP. Relative biases among all instruments were generally less than 50 m, and the agreement between MTP ML height estimates and other estimates was at least as good as the agreement among the other estimates. The ML height estimates from the MTP and other instruments are utilized to determine the spatial and temporal evolution of ML height in the Houston, Texas, area on 1 September 2000. An elevated temperature inversion was present, so ML growth was inhibited until early afternoon. In the afternoon, large spatial variations in ML height developed across the Houston area. The highest ML heights, well over 2 km, were observed to the north of Houston, while downwind of Galveston Bay and within the late afternoon sea breeze ML heights were much lower. The spatial variations that were found away from the immediate influence of coastal circulations were unexpected, and multiple independent ML height estimates were essential for documenting this feature.
Abstract
An airborne microwave temperature profiler (MTP) was deployed during the Texas 2000 Air Quality Study (TexAQS-2000) to make measurements of boundary layer thermal structure. An objective technique was developed and tested for estimating the mixed layer (ML) height from the MTP vertical temperature profiles. The technique identifies the ML height as a threshold increase of potential temperature from its minimum value within the boundary layer. To calibrate the technique and evaluate the usefulness of this approach, coincident estimates from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in situ aircraft measurements were compared with each other and with the MTP. Relative biases among all instruments were generally less than 50 m, and the agreement between MTP ML height estimates and other estimates was at least as good as the agreement among the other estimates. The ML height estimates from the MTP and other instruments are utilized to determine the spatial and temporal evolution of ML height in the Houston, Texas, area on 1 September 2000. An elevated temperature inversion was present, so ML growth was inhibited until early afternoon. In the afternoon, large spatial variations in ML height developed across the Houston area. The highest ML heights, well over 2 km, were observed to the north of Houston, while downwind of Galveston Bay and within the late afternoon sea breeze ML heights were much lower. The spatial variations that were found away from the immediate influence of coastal circulations were unexpected, and multiple independent ML height estimates were essential for documenting this feature.
Abstract
Intense lake-effect snowstorms regularly develop over the eastern Great Lakes, resulting in extreme winter weather conditions with snowfalls sometimes exceeding 1 m. The Ontario Winter Lake-effect Systems (OWLeS) field campaign sought to obtain unprecedented observations of these highly complex winter storms.
OWLeS employed an extensive and diverse array of instrumentation, including the University of Wyoming King Air research aircraft, five university-owned upper-air sounding systems, three Center for Severe Weather Research Doppler on Wheels radars, a wind profiler, profiling cloud and precipitation radars, an airborne lidar, mobile mesonets, deployable weather Pods, and snowfall and particle measuring systems. Close collaborations with National Weather Service Forecast Offices during and following OWLeS have provided a direct pathway for results of observational and numerical modeling analyses to improve the prediction of severe lake-effect snowstorm evolution. The roles of atmospheric boundary layer processes over heterogeneous surfaces (water, ice, and land), mixed-phase microphysics within shallow convection, topography, and mesoscale convective structures are being explored.
More than 75 students representing nine institutions participated in a wide variety of data collection efforts, including the operation of radars, radiosonde systems, mobile mesonets, and snow observation equipment in challenging and severe winter weather environments.
Abstract
Intense lake-effect snowstorms regularly develop over the eastern Great Lakes, resulting in extreme winter weather conditions with snowfalls sometimes exceeding 1 m. The Ontario Winter Lake-effect Systems (OWLeS) field campaign sought to obtain unprecedented observations of these highly complex winter storms.
OWLeS employed an extensive and diverse array of instrumentation, including the University of Wyoming King Air research aircraft, five university-owned upper-air sounding systems, three Center for Severe Weather Research Doppler on Wheels radars, a wind profiler, profiling cloud and precipitation radars, an airborne lidar, mobile mesonets, deployable weather Pods, and snowfall and particle measuring systems. Close collaborations with National Weather Service Forecast Offices during and following OWLeS have provided a direct pathway for results of observational and numerical modeling analyses to improve the prediction of severe lake-effect snowstorm evolution. The roles of atmospheric boundary layer processes over heterogeneous surfaces (water, ice, and land), mixed-phase microphysics within shallow convection, topography, and mesoscale convective structures are being explored.
More than 75 students representing nine institutions participated in a wide variety of data collection efforts, including the operation of radars, radiosonde systems, mobile mesonets, and snow observation equipment in challenging and severe winter weather environments.
Abstract
This paper presents analyses of the finescale structure of convection in the comma head of two continental winter cyclones and a 16-storm climatology analyzing the distribution of lightning within the comma head. A case study of a deep cyclone is presented illustrating how upper-tropospheric dry air associated with the dry slot can intrude over moist Gulf air, creating two zones of precipitation within the comma head: a northern zone characterized by deep stratiform clouds topped by generating cells and a southern zone marked by elevated convection. Lightning, when it occurred, originated from the elevated convection. A second case study of a cutoff low is presented to examine the relationship between lightning flashes and wintertime convection. Updrafts within convective cells in both storms approached 6–8 m s−1, and convective available potential energy in the cell environment reached approximately 50–250 J kg−1. Radar measurements obtained in convective updraft regions showed enhanced spectral width within the temperature range from −10° to −20°C, while microphysical measurements showed the simultaneous presence of graupel, ice particles, and supercooled water at the same temperatures, together supporting noninductive charging as an important charging mechanism in these storms.
A climatology of lightning flashes across the comma head of 16 winter cyclones shows that lightning flashes commonly occur on the southern side of the comma head where dry-slot air is more likely to overrun lower-level moist air. Over 90% of the cloud-to-ground flashes had negative polarity, suggesting the cells were not strongly sheared aloft. About 55% of the flashes were associated with cloud-to-ground flashes while 45% were in-cloud flashes.
Abstract
This paper presents analyses of the finescale structure of convection in the comma head of two continental winter cyclones and a 16-storm climatology analyzing the distribution of lightning within the comma head. A case study of a deep cyclone is presented illustrating how upper-tropospheric dry air associated with the dry slot can intrude over moist Gulf air, creating two zones of precipitation within the comma head: a northern zone characterized by deep stratiform clouds topped by generating cells and a southern zone marked by elevated convection. Lightning, when it occurred, originated from the elevated convection. A second case study of a cutoff low is presented to examine the relationship between lightning flashes and wintertime convection. Updrafts within convective cells in both storms approached 6–8 m s−1, and convective available potential energy in the cell environment reached approximately 50–250 J kg−1. Radar measurements obtained in convective updraft regions showed enhanced spectral width within the temperature range from −10° to −20°C, while microphysical measurements showed the simultaneous presence of graupel, ice particles, and supercooled water at the same temperatures, together supporting noninductive charging as an important charging mechanism in these storms.
A climatology of lightning flashes across the comma head of 16 winter cyclones shows that lightning flashes commonly occur on the southern side of the comma head where dry-slot air is more likely to overrun lower-level moist air. Over 90% of the cloud-to-ground flashes had negative polarity, suggesting the cells were not strongly sheared aloft. About 55% of the flashes were associated with cloud-to-ground flashes while 45% were in-cloud flashes.
By many metrics, the tornado outbreak on 27 April 2011 was the most significant tornado outbreak since 1950, exceeding the super outbreak of 3–4 April 1974. The number of tornadoes over a 24-h period (midnight to midnight) was 199; the tornado fatalities and injuries were 316 and more than 2,700, respectively; and the insurable loss exceeded $4 billion (U.S. dollars). In this paper, we provide a meteorological overview of this outbreak and illustrate that the event was composed of three mesoscale events: a large early morning quasi-linear convective system (QLCS), a midday QLCS, and numerous afternoon supercell storms. The main data sources include NWS and research radars, profilers, surface measurements, and photos and videos of the tornadoes. The primary motivation for this preliminary research is to document the diverse characteristics (e.g., tornado characteristics and mesoscale organization of deep convection) of this outbreak and summarize preliminary analyses that are worthy of additional research on this case.
By many metrics, the tornado outbreak on 27 April 2011 was the most significant tornado outbreak since 1950, exceeding the super outbreak of 3–4 April 1974. The number of tornadoes over a 24-h period (midnight to midnight) was 199; the tornado fatalities and injuries were 316 and more than 2,700, respectively; and the insurable loss exceeded $4 billion (U.S. dollars). In this paper, we provide a meteorological overview of this outbreak and illustrate that the event was composed of three mesoscale events: a large early morning quasi-linear convective system (QLCS), a midday QLCS, and numerous afternoon supercell storms. The main data sources include NWS and research radars, profilers, surface measurements, and photos and videos of the tornadoes. The primary motivation for this preliminary research is to document the diverse characteristics (e.g., tornado characteristics and mesoscale organization of deep convection) of this outbreak and summarize preliminary analyses that are worthy of additional research on this case.
Abstract
The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.
To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.
Abstract
The central Great Plains region in North America has a nocturnal maximum in warm-season precipitation. Much of this precipitation comes from organized mesoscale convective systems (MCSs). This nocturnal maximum is counterintuitive in the sense that convective activity over the Great Plains is out of phase with the local generation of CAPE by solar heating of the surface. The lower troposphere in this nocturnal environment is typically characterized by a low-level jet (LLJ) just above a stable boundary layer (SBL), and convective available potential energy (CAPE) values that peak above the SBL, resulting in convection that may be elevated, with source air decoupled from the surface. Nocturnal MCS-induced cold pools often trigger undular bores and solitary waves within the SBL. A full understanding of the nocturnal precipitation maximum remains elusive, although it appears that bore-induced lifting and the LLJ may be instrumental to convection initiation and the maintenance of MCSs at night.
To gain insight into nocturnal MCSs, their essential ingredients, and paths toward improving the relatively poor predictive skill of nocturnal convection in weather and climate models, a large, multiagency field campaign called Plains Elevated Convection At Night (PECAN) was conducted in 2015. PECAN employed three research aircraft, an unprecedented coordinated array of nine mobile scanning radars, a fixed S-band radar, a unique mesoscale network of lower-tropospheric profiling systems called the PECAN Integrated Sounding Array (PISA), and numerous mobile-mesonet surface weather stations. The rich PECAN dataset is expected to improve our understanding and prediction of continental nocturnal warm-season precipitation. This article provides a summary of the PECAN field experiment and preliminary findings.
The Bow Echo and MCV Experiment: Observations and Opportunities
Observations and Opportunities
The Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) is a research investigation using highly mobile platforms to examine the life cycles of mesoscale convective systems. It represents a combination of two related investigations to study (a) bow echoes, principally those that produce damaging surface winds and last at least 4 h, and (b) larger convective systems that produce long-lived mesoscale convective vortices (MCVs). The field phase of BAMEX utilized three instrumented research aircraft and an array of mobile ground-based instruments. Two long-range turboprop aircraft were equipped with pseudo-dual-Doppler radar capability, the third aircraft was a jet equipped with dropsondes. The aircraft documented the environmental structure of mesoscale convective systems (MCSs), observed the kinematic and thermodynamic structure of the convective line and stratiform regions (where rear-inflow jets and MCVs reside), and captured the structure of mature MCVs. The ground-based instruments augmented sounding coverage and documented the thermodynamic structure of the PBL, both within MCSs and in their environment. The present article reviews the scientific goals of the study and the facility deployment strategy, summarizes the cases observed, and highlights the forthcoming significant research directions and opportunities.
The Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) is a research investigation using highly mobile platforms to examine the life cycles of mesoscale convective systems. It represents a combination of two related investigations to study (a) bow echoes, principally those that produce damaging surface winds and last at least 4 h, and (b) larger convective systems that produce long-lived mesoscale convective vortices (MCVs). The field phase of BAMEX utilized three instrumented research aircraft and an array of mobile ground-based instruments. Two long-range turboprop aircraft were equipped with pseudo-dual-Doppler radar capability, the third aircraft was a jet equipped with dropsondes. The aircraft documented the environmental structure of mesoscale convective systems (MCSs), observed the kinematic and thermodynamic structure of the convective line and stratiform regions (where rear-inflow jets and MCVs reside), and captured the structure of mature MCVs. The ground-based instruments augmented sounding coverage and documented the thermodynamic structure of the PBL, both within MCSs and in their environment. The present article reviews the scientific goals of the study and the facility deployment strategy, summarizes the cases observed, and highlights the forthcoming significant research directions and opportunities.