Search Results

You are looking at 41 - 46 of 46 items for

  • Author or Editor: R. M. Samelson x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Kathryn A. Kelly
,
R. Justin Small
,
R. M. Samelson
,
Bo Qiu
,
Terrence M. Joyce
,
Young-Oh Kwon
, and
Meghan F. Cronin

Abstract

In the Northern Hemisphere midlatitude western boundary current (WBC) systems there is a complex interaction between dynamics and thermodynamics and between atmosphere and ocean. Their potential contribution to the climate system motivated major parallel field programs in both the North Pacific [Kuroshio Extension System Study (KESS)] and the North Atlantic [Climate Variability and Predictability (CLIVAR) Mode Water Dynamics Experiment (CLIMODE)], and preliminary observations and analyses from these programs highlight that complexity. The Gulf Stream (GS) in the North Atlantic and the Kuroshio Extension (KE) in the North Pacific have broad similarities, as subtropical gyre WBCs, but they also have significant differences, which affect the regional air–sea exchange processes and their larger-scale interactions. The 15-yr satellite altimeter data record, which provides a rich source of information, is combined here with the longer historical record from in situ data to describe and compare the current systems. While many important similarities have been noted on the dynamic and thermodynamic aspects of the time-varying GS and KE, some not-so-subtle differences exist in current variability, mode water properties, and recirculation gyre structure. This paper provides a comprehensive comparison of these two current systems from both dynamical and thermodynamical perspectives with the goal of developing and evaluating hypotheses about the physics underlying the observed differences, and exploring the WBC’s potential to influence midlatitude sea–air interaction. Differences between the GS and KE systems offer opportunities to compare the dominant processes and thereby to advance understanding of their role in the climate system.

Full access
R. M. Samelson
,
S. P. de Szoeke
,
E. D. Skyllingstad
,
P. L. Barbour
, and
S. M. Durski

Abstract

Fog and low-level stratus during April–September 2009 are examined in a set of coupled ocean–atmosphere numerical simulations of the northern California Current System (CCS). The model configurations differ only in the choice of planetary boundary layer (PBL) parameterization scheme and, in one case, surface flux scheme. The results suggest that fog formation in this region primarily occurs through condensation at the surface induced locally by surface cooling, when moist offshore air is advected over cold upwelled waters and the shallow coastal marine PBL is further stabilized by warm, dry, continental air that extends offshore above the PBL inversion. These results are consistent with some but not all prior hypotheses for fog formation in the CCS region. Fog formation by downward growth of a preexisting stratus layer is also found in the simulations, but dominates only in those simulations with PBL schemes that produce an extensive and evidently unphysical stratus layer at 200 m height, which serves as the source for the downward growth. The stronger fog response in later summer months arises from seasonal warming of offshore SST, which increases the moisture content and temperature of the upstream air mass, while cool coastal SSTs are maintained by upwelling. On synoptic time scales, a similar influence of fog response on upstream conditions is found but controlled instead by changes in wind direction. These results suggest that the critical factors determining the evolution of the coastal fog regime in a warming climate are likely the temperature of upwelling source waters and the offshore flow of continental air.

Open access
R. M. Samelson
,
L. W. O’Neill
,
D. B. Chelton
,
E. D. Skyllingstad
,
P. L. Barbour
, and
S. M. Durski

Abstract

The influence of mesoscale sea surface temperature (SST) variations on wind stress and boundary layer winds is examined from coupled ocean–atmosphere numerical simulations and satellite observations of the northern California Current System. Model coupling coefficients relating the divergence and curl of wind stress and wind to downwind and crosswind SST gradients are generally smaller than observed values and vary by a factor of 2 depending on planetary boundary layer (PBL) scheme, with values larger for smoothed fields on the 0.25° observational grid than for unsmoothed fields on the 12-km model grid. Divergence coefficients are larger than curl coefficients on the 0.25° grid but not on the model grid, consistent with stronger scale dependence for the divergence response than for curl in a spatial cross-spectral analysis. Coupling coefficients for 10-m equivalent neutral stability winds are 30%–50% larger than those for 10-m wind, implying a correlated effect of surface-layer stability variations. Crosswind surface air temperature and SST gradients are more strongly coupled than downwind gradients, while the opposite is true for downwind and crosswind heat flux and SST gradients. Midlevel boundary layer wind coupling coefficients show a reversed response relative to the surface that is predicted by an analytical model; a predicted second reversal with height is not seen in the simulations. The relative values of coupling coefficients are consistent with previous results for the same PBL schemes in the Agulhas Return Current region, but their magnitudes are smaller, likely because of the effect of mean wind on perturbation heat fluxes.

Open access
R. M. Samelson
,
E. D. Skyllingstad
,
D. B. Chelton
,
S. K. Esbensen
,
L. W. O'Neill
, and
N. Thum

Abstract

A simple quasi-equilibrium analytical model is used to explore hypotheses related to observed spatial correlations between sea surface temperatures and wind stress on horizontal scales of 50–500 km. It is argued that a plausible contributor to the observed correlations is the approximate linear relationship between the surface wind stress and stress boundary layer depth under conditions in which the stress boundary layer has come into approximate equilibrium with steady free-atmospheric forcing. Warmer sea surface temperature is associated with deeper boundary layers and stronger wind stress, while colder temperature is associated with shallower boundary layers and weaker wind stress. Two interpretations of a previous hypothesis involving the downward mixing of horizontal momentum are discussed, and it is argued that neither is appropriate for the warm-to-cold transition or quasi-equilibrium conditions, while one may be appropriate for the cold-to-warm transition. Solutions of a turbulent large-eddy simulation numerical model illustrate some of the processes represented in the analytical model. A dimensionless ratio γτA is introduced to measure the relative influence of lateral momentum advection and local surface stress on the boundary layer wind profile. It is argued that when γτA < 1, and under conditions in which the thermodynamically induced lateral pressure gradients are small, the boundary layer depth effect will dominate lateral advection and control the surface stress.

Full access
The Climode Group:
,
J. Marshall
,
R. Ferrari
,
G. Forget
,
G. Maze
,
A. Andersson
,
N. Bates
,
W. Dewar
,
S. Doney
,
D. Fratantoni
,
T. Joyce
,
F. Straneo
,
J. Toole
,
R. Weller
,
J. Edson
,
M. Gregg
,
K. Kelly
,
S. Lozier
,
J. Palter
,
R. Lumpkin
,
R. Samelson
,
E. Skyllingstad
,
K. Silverthorne
,
L. Talley
, and
L. Thomas

Abstract

A major oceanographic field experiment is described, which is designed to observe, quantify, and understand the creation and dispersal of weakly stratified fluid known as “mode water” in the region of the Gulf Stream. Formed in the wintertime by convection driven by the most intense air–sea fluxes observed anywhere over the globe, the role of mode waters in the general circulation of the subtropical gyre and its biogeo-chemical cycles is also addressed. The experiment is known as the CLIVAR Mode Water Dynamic Experiment (CLIMODE). Here we review the scientific objectives of the experiment and present some preliminary results.

Full access
Andrey Y. Shcherbina
,
Miles A. Sundermeyer
,
Eric Kunze
,
Eric D’Asaro
,
Gualtiero Badin
,
Daniel Birch
,
Anne-Marie E. G. Brunner-Suzuki
,
Jörn Callies
,
Brandy T. Kuebel Cervantes
,
Mariona Claret
,
Brian Concannon
,
Jeffrey Early
,
Raffaele Ferrari
,
Louis Goodman
,
Ramsey R. Harcourt
,
Jody M. Klymak
,
Craig M. Lee
,
M.-Pascale Lelong
,
Murray D. Levine
,
Ren-Chieh Lien
,
Amala Mahadevan
,
James C. McWilliams
,
M. Jeroen Molemaker
,
Sonaljit Mukherjee
,
Jonathan D. Nash
,
Tamay Özgökmen
,
Stephen D. Pierce
,
Sanjiv Ramachandran
,
Roger M. Samelson
,
Thomas B. Sanford
,
R. Kipp Shearman
,
Eric D. Skyllingstad
,
K. Shafer Smith
,
Amit Tandon
,
John R. Taylor
,
Eugene A. Terray
,
Leif N. Thomas
, and
James R. Ledwell

Abstract

Lateral stirring is a basic oceanographic phenomenon affecting the distribution of physical, chemical, and biological fields. Eddy stirring at scales on the order of 100 km (the mesoscale) is fairly well understood and explicitly represented in modern eddy-resolving numerical models of global ocean circulation. The same cannot be said for smaller-scale stirring processes. Here, the authors describe a major oceanographic field experiment aimed at observing and understanding the processes responsible for stirring at scales of 0.1–10 km. Stirring processes of varying intensity were studied in the Sargasso Sea eddy field approximately 250 km southeast of Cape Hatteras. Lateral variability of water-mass properties, the distribution of microscale turbulence, and the evolution of several patches of inert dye were studied with an array of shipboard, autonomous, and airborne instruments. Observations were made at two sites, characterized by weak and moderate background mesoscale straining, to contrast different regimes of lateral stirring. Analyses to date suggest that, in both cases, the lateral dispersion of natural and deliberately released tracers was O(1) m2 s–1 as found elsewhere, which is faster than might be expected from traditional shear dispersion by persistent mesoscale flow and linear internal waves. These findings point to the possible importance of kilometer-scale stirring by submesoscale eddies and nonlinear internal-wave processes or the need to modify the traditional shear-dispersion paradigm to include higher-order effects. A unique aspect of the Scalable Lateral Mixing and Coherent Turbulence (LatMix) field experiment is the combination of direct measurements of dye dispersion with the concurrent multiscale hydrographic and turbulence observations, enabling evaluation of the underlying mechanisms responsible for the observed dispersion at a new level.

Full access