Search Results

You are looking at 61 - 70 of 108 items for

  • Author or Editor: Wei Wang x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Yongwei Wang, Yaqi Gao, Hairun Qin, Jianping Huang, Cheng Liu, Cheng Hu, Wei Wang, Shoudong Liu, and Xuhui Lee

Abstract

Lake Taihu is a shallow lake located in the Yangtze River delta region in eastern China. Lake breezes and their interactions with urban heat islands are of great importance to air quality and weather forecasting. In this study, surface observations at a dense network and Wind Profile Radar measurements were utilized to characterize the lake breezes at Lake Taihu and assess the impact of geophysical factors on the development and intensity of the lake breezes. The lake breezes were characterized by a low occurrence frequency of 12%–17% (defined as the percentage of days with lake breezes in a given month), weak speed (annual mean ranging from 1.5 to 3.3 m s−1), late onset [average onset around 1110 local standard time (LST), with a range of 0900–1300 LST], short duration (annual mean 3.5 h), and low circulation depth (average depth of 400 m from 1200 to 1400 LST). The lake breezes were greatly suppressed when the geostrophic winds were higher than 4.1 m s−1. The low heat capacity of shallow water (mean depth 2.0 m) led to small temperature differences between the land and the lake, which was the main factor responsible for the low occurrence frequency along Lake Taihu. All of the characteristic parameters showed distinct seasonal variations. Increased frequencies, earlier onset times, and longer durations on the northern lakeshore were indicative of the impact of the urban heat island on the lake breezes.

Full access
Wei-Chyung Wang, Qing-Yun Zhang, David R. Easterling, and Thomas R. Karl

Abstract

Two aspects of Beijing cloudiness are studied: its relationship to other climate parameters during the period 1951–1990 and the reconstruction of proxy values between 1875 and 1950. For the recent period, cloudiness varies with no apparent trend and is highly correlated with the total number of rain days (r=0.77) and total sunshine duration (r=0.72). Good correlation is also found with maximum surface air temperature, surface relative humidity, and total precipitation. While the correlation between cloudiness and solar radiation was large prior to 1976, the coefficient for the period 1976–1990 is much smaller. This decrease can be attributed to a negative trend in solar radiation, which is consistent with an observed decrease in visibility. Variations in Beijing cloudiness are closely related to those found over most of northern China, while little similarity is found with locations south of 35°N.

The large correlation between annual cloudiness and the total number of rain days between 1951 and 1990 was used in conjunction with the observed rain day record for the period 1875–1950 to construct a proxy cloudiness record for Beijing for the period 1875–1950. Comparisons between proxy cloudiness and available observations of surface air temperature and relative humidity reveal that the relationships are consistent with those found when observed cloudiness is compared with observed temperature and humidity data. On the century time scale, there is no clear trend in percent cloudiness. However, on the decadal time scale, there is a negative trend in cloudiness during the period 1880–1930 followed by a period of relatively constant values between 1940 and 1975.

Full access
Shou-Jun Chen, Ying-Hwa Kuo, Wei Wang, Zu-Yu Tao, and Bo Cui

Abstract

On 12–13 June 1991, a series of convective rainstorms (defined as mesoscale precipitation systems with rainfall rates exceeding 10 mm h−1) developed successively along the Mei-Yu front. During this event, new rainstorms formed to the east of preceding storms at an interval of approximately 300–400 km. The successive development and eastward propagation of these rainstorms produced heavy rainfall over the Jiang-Huai Basin in eastern China, with a maximum 24-h accumulation of 234 mm. This study presents the results of a numerical simulation of this heavy rainfall event using the Penn State–NCAR Mesoscale Model Version 5 (MM5) with a horizontal resolution of 54 km.

Despite the relatively coarse horizontal resolution, the MM5, using a moist physics package comprising an explicit scheme and the Grell cumulus parameterization, simulated the successive development of the rainstorms. The simulated rainstorms compared favorably with the observed systems in terms of size and intensity. An additional sensitivity experiment showed that latent heat release is crucial for the development of the rainstorms, the mesoscale low-level jet, the mesolow, the rapid spinup of vorticity, and the Mei-Yu frontogenesis. Without latent heat release, the maximum vertical motion associated with the rainstorm is reduced from 70 to 6 cm s−1.

Additional model sensitivity experiments using the Kain–Fritsch cumulus parameterization with grid sizes of 54 and 18 km produced results very similar to the 54-km control experiment with the Grell scheme. This suggests that the simulation of Mei-Yu rainstorms, the mesoscale low-level jet, and the mesolow is not highly sensitive to convective parameterization and grid resolution. In all the full-physics experiments, the model rainfall was dominated by the resolvable-scale precipitation. This is attributed to the high relative humidity and low convective available potential energy environment in the vicinity of the Mei-Yu front.

The modeling results suggest that there is strong interaction and positive feedback between the convective rainstorms embedded within the Mei-Yu front and the Mei-Yu front itself. The front provides a favorable environment for such rainstorms to develop, and the rainstorms intensify the Mei-Yu front.

Full access
Hans R. Schneider, Malcolm K. W. Ko, Nien Dak Sze, Guang-Yu Shi, and Wei-Chyung Wang

Abstract

The effect of eddy diffusion in an interactive two-dimensional model of the stratosphere is reexamined. The model consists of a primitive equation dynamics module, a simplified HOx ozone model and a full radiative transfer scheme. The diabatic/residual circulation in the model stratosphere is maintained by the following processes: 1) nonlocal forcing resulting from dissipation in the parameterized model troposphere and frictional drag at mesospheric levels, 2) mechanical damping within the stratosphere itself, and 3) potential vorticity flux due to large scale waves. The net effect of each process is discussed in terms of the efficiency of the induced circulation in transporting ozone from the equatorial lower stratosphere to high latitude regions. The same eddy diffusion coefficients are used to parameterize the flux of quasi-geostrophic potential vorticity and diffusion in the tracer transport equation. It is shown that the ozone distributions generated with the interactive two-dimensional model are very sensitive to the choice of values for the friction and the eddy diffusion coefficients. The strength of the circulation increases with the mechanical damping and Kyy. At the same time, larger diffusion in the tracer transport equation reduces the equator to pole transport (Holton 1986). Depending on the amount of friction assumed in the stratosphere, increasing eddy diffusion can lead to an increase as well as a decrease in the net transport. It is shown that reasonable latitudinal gradients of ozone can be obtained by using small values for the mechanical damping [≈1/(100 days)] and Kyy (order 104 m2 s−1) for the mid- and high-latitude stratosphere.

Full access
Liqi Chen, Wei Li, Jianqiong Zhan, Jianjun Wang, Yuanhui Zhang, and Xulin Yang

Abstract

To investigate the concentrations, sources, and temporal variations of atmospheric black carbon (BC) in the summer Arctic, routine ground-level observations of BC by optical absorption were made in the summer from 2005 to 2008 at the Chinese Arctic “Yellow River” Station (78°55′N, 11°56′E) at Ny-Ålesund on the island of Spitsbergen in the Svalbard Archipelago. Methods of the ensemble empirical-mode decomposition analysis and back-trajectory analysis were employed to assess temporal variation embedded in the BC datasets and airmass transport patterns. The 10th-percentile and median values of BC concentrations were 7.2 and 14.6 ng m−3, respectively, and hourly average BC concentrations ranged from 2.5 to 54.6 ng m−3. A gradual increase was found by 4 ng m−3 a−1. This increase was not seen in the Zeppelin Station and it seemed to contrast with the prevalent conception of generally decreasing BC concentration since 1989 in the Arctic. Factors responsible for this increase such as changes in emissions and atmospheric transport were taken into consideration. The result indicated that BC from local emissions was mostly responsible for the observed increase from 2005 to 2008. BC temporal variation in the summer was controlled by the atmospheric circulation, which presented a significant 6–14-day variation and coherent with 1–3- and 2–5-day and longer cycle variation. Although the atmospheric circulation changes from 2005 to 2008, there was not a marked trend in long-range transportation of BC. This study suggested that local emissions might have significant implication for the regional radiative energy balance at Ny-Ålesund.

Full access
Michael R. Riches, Wei-Chyung Wang, Panqin Chen, Shiyan Tao, Shuguang Zhou, and Yihui Ding

This report summarizes the progress since 1991 of two agreements on “global and regional climate change” studies between the U.S. Department of Energy (DOE) and two state agencies of the People's Republic of China. The first agreement is the DOE–Chinese Academy of Science joint project on the “Study of the Greenhouse Effect” and the second agreement is the DOE–China Meteorological Administration joint project on the “Study of Regional Climate.” While development of general circulation climate models and analysis of climate data over China continues, the joint research produced several unique Chinese climate datasets, including the reconstruction of 2000 years of historical climate, quality assured instrumental climate data, and an archive of methane emissions from rice fields in southern China.

Full access
Xiaodong Huang, Zhaoyun Wang, Zhiwei Zhang, Yunchao Yang, Chun Zhou, Qingxuan Yang, Wei Zhao, and Jiwei Tian

Abstract

The role of mesoscale eddies in modulating the semidiurnal internal tide (SIT) in the northern South China Sea (SCS) is examined using the data from a cross-shaped mooring array. From November 2013 to January 2014, an anticyclonic eddy (AE) and cyclonic eddy (CE) pair crossed the westward SIT beam originating in Luzon Strait. Observations showed that, because of the current and stratification modulations by the eddy pair, the propagation speed of the mode-1 SIT sped up (slowed down) by up to 0.7 m s−1 (0.4 m s−1) within the AE’s (CE’s) southern portion. As a result of the spatially varying phase speed, the mode-1 SIT wave crest was clockwise rotated (counterclockwise rotated) within the AE (CE) core, while it exhibited convex and concave (concave and convex) patterns on the southern and northern peripheries of the AE (CE), respectively. In mid-to-late November, most of the mode-1 SIT energy was refracted by the AE away from Dongsha Island toward the north part of the northern SCS, which resulted in enhanced internal solitary waves (ISWs) there. Corresponding to the energy refraction, responses of the depth-integrated mode-1 SIT energy to the eddies were generally in phase at the along-beam-direction moorings but out of phase in the south and north parts of the northern SCS at the cross-beam-direction moorings. From late December to early January, intensified mode-2 SIT was observed, whose energy was likely transferred from the mode-1 SIT through eddy–wave interactions. The observation results reported here are helpful to improve the capability to predict internal tides and ISWs in the northern SCS.

Full access
Wei Gu, Lin Wang, Zeng-Zhen Hu, Kaiming Hu, and Yong Li

Abstract

The first rainy season (FRS), also known as the presummer rainy season, is the first standing stage of the East Asian summer monsoon when over 40% of the annual precipitation is received over South China. Based on the start and end dates of the FRS defined by the China Meteorological Administration, this study investigates the interannual variations of the FRS precipitation over South China and its mechanism with daily mean data. The length and start/end date of the FRS vary year to year, and the average length of the FRS is 90 days, spanning from 6 April to 4 July. Composite analyses reveal that the years with abundant FRS precipitation over South China feature weakened anticyclonic wind shear over the Indochina Peninsula in the upper troposphere, southwestward shift of the western Pacific subtropical high, and anticyclonic wind anomalies over the South China Sea in the lower troposphere. The lower-tropospheric southwesterly wind anomalies are especially important because they help to enhance warm advection and water vapor transport toward South China, increase the lower tropospheric convective instability, and shape the pattern of the anomalous ascent over South China. It is further proposed that a local positive feedback between circulation and precipitation exists in this process. The variability of the FRS precipitation can be well explained by a zonal sea surface temperature (SST) dipole in the tropical Pacific and the associated Matsuno–Gill-type Rossby wave response over the western North Pacific. The interannual variability of both the SST dipole and the FRS precipitation over South China is weakened after the year 2000.

Full access
Thomas R. Karl, Wei-Chyung Wang, Michael E. Schlesinger, Richard W. Knight, and David Portman

Abstract

Important surface observations such as the daily maximum and minimum temperature, daily precipitation, and cloud ceilings often have localized characteristics that are difficult to reproduce with the current resolution and the physical parameterizations in state-of-the-art General Circulation climate Models (GCMs). Many of the difficulties can be partially attributed to mismatches in scale, local topography. regional geography and boundary conditions between models and surface-based observations. Here, we present a method, called climatological projection by model statistics (CPMS), to relate GCM grid-point flee-atmosphere statistics, the predictors, to these important local surface observations. The method can be viewed as a generalization of the model output statistics (MOS) and perfect prog (PP) procedures used in numerical weather prediction (NWP) models. It consists of the application of three statistical methods: 1) principle component analysis (FICA), 2) canonical correlation, and 3) inflated regression analysis. The PCA reduces the redundancy of the predictors The canonical correlation is used to develop simultaneous relationships between linear combinations of the predictors, the canonical variables, and the surface-based observations. Finally, inflated regression is used to relate the important canonical variables to each of the surface-based observed variables.

We demonstrate that even an early version of the Oregon State University two-level atmospheric GCM (with prescribed sea surface temperature) produces free-atmosphere statistics than can, when standardized using the model's internal means and variances (the MOS-like version of CPMS), closely approximate the observed local climate. When the model data are standardized by the observed free-atmosphere means and variances (the PP version of CPMS), however, the model does not reproduce the observed surface climate as well. Our results indicate that in the MOS-like version of CPMS the differences between the output of a ten-year GCM control run and the surface-based observations are often smaller than the differences between the observations of two ten-year periods. Such positive results suggest that GCMs may already contain important climatological information that can be used to infer the local climate.

Full access
Chia-Chi Wang, Wei-Liang Lee, Yu-Luen Chen, and Huang-Hsiung Hsu

Abstract

The double intertropical convergence zone (ITCZ) bias in the eastern Pacific in the Community Earth System Model version 1 with Community Atmosphere Model version 5 (CESM1/CAM5) is diagnosed. In CAM5 standalone, the northern ITCZ is associated with inertial instability and the southern ITCZ is thermally forced. After air–sea coupling, the processes on both hemispheres are switched because the spatial pattern of sea surface temperature (SST) is changed.

Biases occur during boreal spring in both CAM5 and the ocean model. In CAM5 alone, weaker-than-observed equatorial easterly in the tropical eastern South Pacific leads to weaker evaporation and an increase in local SST. The shallow meridional circulation overly converges in the same region in the CAM5 standalone simulation, the planetary boundary layer and middle troposphere are too humid, and the large-scale subsidence is too weak at the middle levels. These biases may result from excessive shallow convection behavior in CAM5. The extra moisture would then fuel stronger convection and a higher precipitation rate in the southeastern Pacific.

In the ocean model, the South Equatorial Current is underestimated and the North Equatorial Countercurrent is located too close to the equator, causing a warm SST bias in the southeastern Pacific and a cold bias in the northeastern Pacific. These SST biases feed back to the atmosphere and further influence convection and the surface wind biases in the coupled simulation. When the convection in the tropical northeastern Pacific becomes thermally forced after coupling, the northern ITCZ is diminished due to colder SST, forming the so-called alternating ITCZ bias.

Full access