Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: A. M. Rhoades x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Alan M. Rhoades
,
Xingying Huang
,
Paul A. Ullrich
, and
Colin M. Zarzycki

Abstract

The location, timing, and intermittency of precipitation in California make the state integrally reliant on winter-season snowpack accumulation to maintain its economic and agricultural livelihood. Of particular concern is that winter-season snowpack has shown a net decline across the western United States over the past 50 years, resulting in major uncertainty in water-resource management heading into the next century. Cutting-edge tools are available to help navigate and preemptively plan for these uncertainties. This paper uses a next-generation modeling technique—variable-resolution global climate modeling within the Community Earth System Model (VR-CESM)—at horizontal resolutions of 0.125° (14 km) and 0.25° (28 km). VR-CESM provides the means to include dynamically large-scale atmosphere–ocean drivers, to limit model bias, and to provide more accurate representations of regional topography while doing so in a more computationally efficient manner than can be achieved with conventional general circulation models. This paper validates VR-CESM at climatological and seasonal time scales for Sierra Nevada snowpack metrics by comparing them with the “Daymet,” “Cal-Adapt,” NARR, NCEP, and North American Land Data Assimilation System (NLDAS) reanalysis datasets, the MODIS remote sensing dataset, the SNOTEL observational dataset, a standard-practice global climate model (CESM), and a regional climate model (WRF Model) dataset. Overall, given California’s complex terrain and intermittent precipitation and that both of the VR-CESM simulations were only constrained by prescribed sea surface temperatures and data on sea ice extent, a 0.68 centered Pearson product-moment correlation, a negative mean SWE bias of <7 mm, an interquartile range well within the values exhibited in the reanalysis datasets, and a mean December–February extent of snow cover that is within 7% of the expected MODIS value together make apparent the efficacy of the VR-CESM framework.

Full access
Zexuan Xu
,
Alan M. Rhoades
,
Hans Johansen
,
Paul A. Ullrich
, and
William D. Collins

Abstract

Dynamical downscaling is a widely used technique to properly capture regional surface heterogeneities that shape the local hydroclimatology. However, in the context of dynamical downscaling, the impacts on simulation fidelity have not been comprehensively evaluated across many user-specified factors, including the refinements of model horizontal resolution, large-scale forcing datasets, and dynamical cores. Two global-to-regional downscaling methods are used to assess these: specifically, the variable-resolution Community Earth System Model (VR-CESM) and the Weather Research and Forecasting (WRF) Model with horizontal resolutions of 28, 14, and 7 km. The modeling strategies are assessed by comparing the VR-CESM and WRF simulations with consistent physical parameterizations and grid domains. Two groups of WRF Models are driven by either the NCEP reanalysis dataset (WRF_NCEP) or VR-CESM7 results (WRF_VRCESM) to evaluate the effects of large-scale forcing datasets. The simulated hydroclimatologies are compared with reference datasets for key properties including total precipitation, snow cover, snow water equivalent (SWE), and surface temperature. The large-scale forcing datasets are critical to the WRF simulations of total precipitation but not surface temperature, controlled by the wind field and atmospheric moisture transport at the ocean boundary. No significant benefit is found in the regional average simulated hydroclimatology by increasing horizontal resolution refinement from 28 to 7 km, probably due to the systematic biases from the diagnostic treatment of rainfall and snowfall in the microphysics scheme. The choice of dynamical core has little impact on total precipitation but significantly determines simulated surface temperature, which is affected by the snow-albedo feedback in winter and soil moisture estimations in summer.

Full access
W. J. Gutowski Jr.
,
P. A. Ullrich
,
A. Hall
,
L. R. Leung
,
T. A. O’Brien
,
C. M. Patricola
,
R. W. Arritt
,
M. S. Bukovsky
,
K. V. Calvin
,
Z. Feng
,
A. D. Jones
,
G. J. Kooperman
,
E. Monier
,
M. S. Pritchard
,
S. C. Pryor
,
Y. Qian
,
A. M. Rhoades
,
A. F. Roberts
,
K. Sakaguchi
,
N. Urban
, and
C. Zarzycki
Full access
W. J. Gutowski Jr
,
P. A. Ullrich
,
A. Hall
,
L. R. Leung
,
T. A. O’Brien
,
C. M. Patricola
,
R. W. Arritt
,
M. S. Bukovsky
,
K. V. Calvin
,
Z. Feng
,
A. D. Jones
,
G. J. Kooperman
,
E. Monier
,
M. S. Pritchard
,
S. C. Pryor
,
Y. Qian
,
A. M. Rhoades
,
A. F. Roberts
,
K. Sakaguchi
,
N. Urban
, and
C. Zarzycki

ABSTRACT

Regional climate modeling addresses our need to understand and simulate climatic processes and phenomena unresolved in global models. This paper highlights examples of current approaches to and innovative uses of regional climate modeling that deepen understanding of the climate system. High-resolution models are generally more skillful in simulating extremes, such as heavy precipitation, strong winds, and severe storms. In addition, research has shown that fine-scale features such as mountains, coastlines, lakes, irrigation, land use, and urban heat islands can substantially influence a region’s climate and its response to changing forcings. Regional climate simulations explicitly simulating convection are now being performed, providing an opportunity to illuminate new physical behavior that previously was represented by parameterizations with large uncertainties. Regional and global models are both advancing toward higher resolution, as computational capacity increases. However, the resolution and ensemble size necessary to produce a sufficient statistical sample of these processes in global models has proven too costly for contemporary supercomputing systems. Regional climate models are thus indispensable tools that complement global models for understanding physical processes governing regional climate variability and change. The deeper understanding of regional climate processes also benefits stakeholders and policymakers who need physically robust, high-resolution climate information to guide societal responses to changing climate. Key scientific questions that will continue to require regional climate models, and opportunities are emerging for addressing those questions.

Free access
D. R. Feldman
,
A. C. Aiken
,
W. R. Boos
,
R. W. H. Carroll
,
V. Chandrasekar
,
S. Collis
,
J. M. Creamean
,
G. de Boer
,
J. Deems
,
P. J. DeMott
,
J. Fan
,
A. N. Flores
,
D. Gochis
,
M. Grover
,
T. C. J. Hill
,
A. Hodshire
,
E. Hulm
,
C. C. Hume
,
R. Jackson
,
F. Junyent
,
A. Kennedy
,
M. Kumjian
,
E. J. T. Levin
,
J. D. Lundquist
,
J. O’Brien
,
M. S. Raleigh
,
J. Reithel
,
A. Rhoades
,
K. Rittger
,
W. Rudisill
,
Z. Sherman
,
E. Siirila-Woodburn
,
S. M. Skiles
,
J. N. Smith
,
R. C. Sullivan
,
A. Theisen
,
M. Tuftedal
,
A. C. Varble
,
A. Wiedlea
,
S. Wielandt
,
K. Williams
, and
Z. Xu

Abstract

The science of mountainous hydrology spans the atmosphere through the bedrock and inherently crosses physical and disciplinary boundaries: land–atmosphere interactions in complex terrain enhance clouds and precipitation, while watersheds retain and release water over a large range of spatial and temporal scales. Limited observations in complex terrain challenge efforts to improve predictive models of the hydrology in the face of rapid changes. The Upper Colorado River exemplifies these challenges, especially with ongoing mismatches between precipitation, snowpack, and discharge. Consequently, the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) user facility has deployed an observatory to the East River Watershed near Crested Butte, Colorado, between September 2021 and June 2023 to measure the main atmospheric drivers of water resources, including precipitation, clouds, winds, aerosols, radiation, temperature, and humidity. This effort, called the Surface Atmosphere Integrated Field Laboratory (SAIL), is also working in tandem with DOE-sponsored surface and subsurface hydrologists and other federal, state, and local partners. SAIL data can be benchmarks for model development by producing a wide range of observational information on precipitation and its associated processes, including those processes that impact snowpack sublimation and redistribution, aerosol direct radiative effects in the atmosphere and in the snowpack, aerosol impacts on clouds and precipitation, and processes controlling surface fluxes of energy and mass. Preliminary data from SAIL’s first year showcase the rich information content in SAIL’s many datastreams and support testing hypotheses that will ultimately improve scientific understanding and predictability of Upper Colorado River hydrology in 2023 and beyond.

Open access