Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: Anders Persson x
- Bulletin of the American Meteorological Society x
- Refine by Access: Content accessible to me x
The Coriolis force, named after French mathematician Gaspard Gustave de Coriolis (1792–1843), has traditionally been derived as a matter of coordinate transformation by an essentially kinematic technique. This has had the consequence that its physical significance for processes in the atmosphere, as well for simple mechanical systems, has not been fully comprehended. A study of Coriolis's own scientific career and achievements shows how the discovery of the Coriolis force was linked, not to any earth sciences, but to early nineteenth century mechanics and industrial developments. His own approach, which followed from a general discussion of the energetics of a rotating mechanical system, provides an alternative and more physical way to look at and understand, for example, its property as a complementary centrifugal force. It also helps to clarify the relation between angular momentum and rotational kinetic energy and how an inertial force can have a significant affect on the movement of a body and still without doing any work. Applying Coriolis's principles elucidates cause and effect aspects of the dynamics and energetics of the atmosphere, the geostrophic adjustment process, the circulation around jet streams, the meridional extent of the Hadley cell, the strength and location of the subtropical jet stream, and the phenomenon of “downstream development” in the zonal westerlies.
The Coriolis force, named after French mathematician Gaspard Gustave de Coriolis (1792–1843), has traditionally been derived as a matter of coordinate transformation by an essentially kinematic technique. This has had the consequence that its physical significance for processes in the atmosphere, as well for simple mechanical systems, has not been fully comprehended. A study of Coriolis's own scientific career and achievements shows how the discovery of the Coriolis force was linked, not to any earth sciences, but to early nineteenth century mechanics and industrial developments. His own approach, which followed from a general discussion of the energetics of a rotating mechanical system, provides an alternative and more physical way to look at and understand, for example, its property as a complementary centrifugal force. It also helps to clarify the relation between angular momentum and rotational kinetic energy and how an inertial force can have a significant affect on the movement of a body and still without doing any work. Applying Coriolis's principles elucidates cause and effect aspects of the dynamics and energetics of the atmosphere, the geostrophic adjustment process, the circulation around jet streams, the meridional extent of the Hadley cell, the strength and location of the subtropical jet stream, and the phenomenon of “downstream development” in the zonal westerlies.
Abstract
The Hovmöller diagram or the trough–ridge diagram, a simple longitude–time diagram, was designed in 1948 by Ernest Hovmöller (1912–2008) to help understand certain features in the dynamics of the atmosphere, in particular the “downstream development” phenomenon. Originally depicting the 500-hPa geopotential, today many other parameters are used, and Hovmöller diagrams have during the last 25 years found a rapidly increasing use in a wide range of atmospheric research.
Abstract
The Hovmöller diagram or the trough–ridge diagram, a simple longitude–time diagram, was designed in 1948 by Ernest Hovmöller (1912–2008) to help understand certain features in the dynamics of the atmosphere, in particular the “downstream development” phenomenon. Originally depicting the 500-hPa geopotential, today many other parameters are used, and Hovmöller diagrams have during the last 25 years found a rapidly increasing use in a wide range of atmospheric research.
Abstract
There are at least three popular perceptions surrounding the weather forecast for the D-day landing in Normandy, 6 June 1994: 1) that the Allied weather forecasters predicted a crucial break or “window of opportunity” in the unsettled weather prevailing at the time; 2) that the German meteorologists, lacking observations from the North Atlantic, failed to see this break coming and thus the invasion took the Wehrmacht by surprise; and 3) that the American forecasters, guided by a skillful analog system, predicted the favorable conditions several days ahead but got no support from their pessimistic British colleagues. This article will present evidence taken mostly from hitherto rather neglected sources of information, transcripts of the telephone discussions between the Allied forecasters and archived German weather analyses. They show that 1) the synoptic development for the invasion was not particularly well predicted and, if there was a break in the weather, it occurred for reasons other than those predicted; 2) the German forecasters were fairly well informed about the large-scale synoptic situation over most of the North Atlantic, probably thanks to decoded American analyses; and 3) from the viewpoint of a “neutral Swede,” the impression is that the American analog method might not have performed as splendidly as its adherents have claimed, but also not as badly as its critics have alleged. Finally, the D-day forecast, the discussions among the forecasters, and their briefings with the Allied command are interesting not only from a historical perspective, but also as an early and well-documented example of decision-making under meteorological uncertainty.
Abstract
There are at least three popular perceptions surrounding the weather forecast for the D-day landing in Normandy, 6 June 1994: 1) that the Allied weather forecasters predicted a crucial break or “window of opportunity” in the unsettled weather prevailing at the time; 2) that the German meteorologists, lacking observations from the North Atlantic, failed to see this break coming and thus the invasion took the Wehrmacht by surprise; and 3) that the American forecasters, guided by a skillful analog system, predicted the favorable conditions several days ahead but got no support from their pessimistic British colleagues. This article will present evidence taken mostly from hitherto rather neglected sources of information, transcripts of the telephone discussions between the Allied forecasters and archived German weather analyses. They show that 1) the synoptic development for the invasion was not particularly well predicted and, if there was a break in the weather, it occurred for reasons other than those predicted; 2) the German forecasters were fairly well informed about the large-scale synoptic situation over most of the North Atlantic, probably thanks to decoded American analyses; and 3) from the viewpoint of a “neutral Swede,” the impression is that the American analog method might not have performed as splendidly as its adherents have claimed, but also not as badly as its critics have alleged. Finally, the D-day forecast, the discussions among the forecasters, and their briefings with the Allied command are interesting not only from a historical perspective, but also as an early and well-documented example of decision-making under meteorological uncertainty.
Medium-range weather prediction has become more skillful over recent decades, but forecast centers still suffer from occasional very poor forecasts, which are often referred to as “dropouts” or “busts.” This study focuses on European Centre for Medium-Range Weather Forecasts (ECMWF) day-6 forecasts for Europe. Although busts are defined by gross scores, bust composites reveal a coherent “Rex type” blocking situation, with a high over northern Europe and a low over the Mediterranean. Initial conditions for these busts also reveal a coherent flow, but this is located over North America and involves a trough over the Rockies, with high convective available potential energy (CAPE) to its east. This flow type occurs in spring and is often associated with a Rossby wave train that has crossed the Pacific. A composite on this initial flow type displays enhanced day-6 random forecast errors and some-what enhanced ensemble forecast spread, indicating reduced inherent predictability.
Mesoscale convective systems, associated with the high levels of CAPE, act to slow the motion of the trough. Hence, convection errors play an active role in the busts. The subgrid-scale nature of convection highlights the importance of the representation of model uncertainty in probabilistic forecasts. The cloud and extreme conditions associated with mesoscale convective systems also reduce the availability and utility of observations provided to the data assimilation.
A question of relevance to the wider community is, do we have observations with sufficient accuracy to better constrain the important error structures in the initial conditions? Meanwhile, improvements to ensemble prediction systems should help us better predict the increase in forecast uncertainty.
Medium-range weather prediction has become more skillful over recent decades, but forecast centers still suffer from occasional very poor forecasts, which are often referred to as “dropouts” or “busts.” This study focuses on European Centre for Medium-Range Weather Forecasts (ECMWF) day-6 forecasts for Europe. Although busts are defined by gross scores, bust composites reveal a coherent “Rex type” blocking situation, with a high over northern Europe and a low over the Mediterranean. Initial conditions for these busts also reveal a coherent flow, but this is located over North America and involves a trough over the Rockies, with high convective available potential energy (CAPE) to its east. This flow type occurs in spring and is often associated with a Rossby wave train that has crossed the Pacific. A composite on this initial flow type displays enhanced day-6 random forecast errors and some-what enhanced ensemble forecast spread, indicating reduced inherent predictability.
Mesoscale convective systems, associated with the high levels of CAPE, act to slow the motion of the trough. Hence, convection errors play an active role in the busts. The subgrid-scale nature of convection highlights the importance of the representation of model uncertainty in probabilistic forecasts. The cloud and extreme conditions associated with mesoscale convective systems also reduce the availability and utility of observations provided to the data assimilation.
A question of relevance to the wider community is, do we have observations with sufficient accuracy to better constrain the important error structures in the initial conditions? Meanwhile, improvements to ensemble prediction systems should help us better predict the increase in forecast uncertainty.