Search Results

You are looking at 1 - 8 of 8 items for :

  • Author or Editor: Andrew J. Monaghan x
  • Journal of Climate x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
David H. Bromwich
,
Andrew J. Monaghan
, and
Zhichang Guo

Abstract

The Polar fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) is employed to examine the El Niño–Southern Oscillation (ENSO) modulation of Antarctic climate for July 1996–June 1999, which is shown to be stronger than for the mean modulation from 1979 to 1999 and appears to be largely due to an eastward shift and enhancement of convection in the tropical Pacific Ocean. This study provides a more comprehensive assessment than can be achieved with observational datasets by using a regional atmospheric model adapted for high-latitude applications (Polar MM5). The most pronounced ENSO response is observed over the Ross Ice Shelf–Marie Byrd Land and over the Weddell Sea–Ronne/Filchner Ice Shelf. In addition to having the largest climate variability associated with ENSO, these two regions exhibit anomalies of opposite sign throughout the study period, which supports and extends similar findings by other investigators. The dipole structure is observed in surface temperature, meridional winds, cloud fraction, and precipitation. The ENSO-related variability is primarily controlled by the large-scale circulation anomalies surrounding the continent, which are consistent throughout the troposphere. When comparing the El Niño/La Niña phases of this late 1990s ENSO cycle, the circulation anomalies are nearly mirror images over the entire Antarctic, indicating their significant modulation by ENSO. Large temperature anomalies, especially in autumn, are prominent over the major ice shelves. This is most likely due to their relatively low elevation with respect to the continental interior making them more sensitive to shifts in synoptic forcing offshore of Antarctica, especially during months with considerable open water. The Polar MM5 simulations are in broad agreement with observational data, and the simulated precipitation closely follows the European Centre for Medium-Range Weather Forecasts Tropical Ocean–Global Atmosphere precipitation trends over the study period. The collective findings of this work suggest the Polar MM5 is capturing ENSO-related atmospheric variability with good skill and may be a useful tool for future climate studies.

Full access
David H. Bromwich
,
Julien P. Nicolas
, and
Andrew J. Monaghan

Abstract

This study evaluates the temporal variability of the Antarctic surface mass balance, approximated as precipitation minus evaporation (PE), and Southern Ocean precipitation in five global reanalyses during 1989–2009. The datasets consist of the NCEP/U.S. Department of Energy (DOE) Atmospheric Model Intercomparison Project 2 reanalysis (NCEP-2), the Japan Meteorological Agency (JMA) 25-year Reanalysis (JRA-25), ECMWF Interim Re-Analysis (ERA-Interim), NASA Modern Era Retrospective-Analysis for Research and Application (MERRA), and the Climate Forecast System Reanalysis (CFSR). Reanalyses are known to be prone to spurious trends and inhomogeneities caused by changes in the observing system, especially in the data-sparse high southern latitudes. The period of study has seen a dramatic increase in the amount of satellite observations used for data assimilation.

The large positive and statistically significant trends in mean Antarctic PE and mean Southern Ocean precipitation in NCEP-2, JRA-25, and MERRA are found to be largely spurious. The origin of these artifacts varies between reanalyses. Notably, a precipitation jump in MERRA in the late 1990s coincides with the start of the assimilation of radiances from the Advanced Microwave Sounding Unit (AMSU). ERA-Interim and CFSR do not exhibit any significant trends. However, the potential impact of the assimilation of rain-affected radiances in ERA-Interim and inhomogeneities in CFSR pressure fields over Antarctica cast some doubt on the reliability of these two datasets.

The authors conclude that ERA-Interim likely offers the most realistic depiction of precipitation changes in high southern latitudes during 1989–2009. The range of the trends in Antarctic PE among the reanalyses is equivalent to 1 mm of sea level over 21 years, which highlights the improvements still needed in reanalysis simulations to better assess the contribution of Antarctica to sea level rise. Finally, this work argues for continuing cautious use of reanalysis datasets for climate change assessment.

Full access
James O. Pinto
,
Andrew J. Monaghan
,
Luca Delle Monache
,
Emilie Vanvyve
, and
Daran L. Rife

Abstract

Dynamical downscaling is a computationally expensive method whereby finescale details of the atmosphere may be portrayed by running a limited area numerical weather prediction model (often called a regional climate model) nested within a coarse-resolution global reanalysis or global climate model output. The goal of this study is to assess using sampling techniques to dynamically downscale a small subset of days to approximate the statistical properties of the entire period of interest. Two sampling techniques are explored: one where days are randomly selected and another where representative days are chosen (or targeted) based on a set of selection criteria. The relative merit of using random sampling versus targeted random sampling is demonstrated using daily mean 2-m air temperature (T2M). The first two moments of dynamically downscaled T2M can be approximated within 0.3 K using just 5% of the population of available days during a 20-yr period. Targeted random sampling can reduce the mean absolute error of these estimates by as much as 30% locally. Estimation of the more extreme values of T2M is more uncertain and requires a larger sample size. The potential reduction in computational cost afforded by these sampling techniques could greatly benefit applications requiring high-resolution dynamically downscaled depictions of regional climate, including situations in which an ensemble of regional climate simulations is required to properly characterize uncertainty in the model physics assumptions, scenarios, and so on.

Full access
Johanna C. Speirs
,
Daniel F. Steinhoff
,
Hamish A. McGowan
,
David H. Bromwich
, and
Andrew J. Monaghan

Abstract

Foehn winds resulting from topographic modification of airflow in the lee of mountain barriers are frequently experienced in the McMurdo Dry Valleys (MDVs) of Antarctica. Strong foehn winds in the MDVs cause dramatic warming at onset and have significant effects on landscape forming processes; however, no detailed scientific investigation of foehn in the MDVs has been conducted. As a result, they are often misinterpreted as adiabatically warmed katabatic winds draining from the polar plateau. Herein observations from surface weather stations and numerical model output from the Antarctic Mesoscale Prediction System (AMPS) during foehn events in the MDVs are presented. Results show that foehn winds in the MDVs are caused by topographic modification of south-southwesterly airflow, which is channeled into the valleys from higher levels. Modeling of a winter foehn event identifies mountain wave activity similar to that associated with midlatitude foehn winds. These events are found to be caused by strong pressure gradients over the mountain ranges of the MDVs related to synoptic-scale cyclones positioned off the coast of Marie Byrd Land. Analysis of meteorological records for 2006 and 2007 finds an increase of 10% in the frequency of foehn events in 2007 compared to 2006, which corresponds to stronger pressure gradients in the Ross Sea region. It is postulated that the intra- and interannual frequency and intensity of foehn events in the MDVs may therefore vary in response to the position and frequency of cyclones in the Ross Sea region.

Full access
Daran L. Rife
,
James O. Pinto
,
Andrew J. Monaghan
,
Christopher A. Davis
, and
John R. Hannan

Abstract

This study documents the global distribution and characteristics of diurnally varying low-level jets (LLJs), including their horizontal, vertical, and temporal structure, with a special emphasis on highlighting the underlying commonalities and unique qualities of the various nocturnal jets. Two tools are developed to accomplish this goal. The first is a 21-yr global reanalysis performed with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) using a horizontal grid spacing of 40 km. A unique characteristic of the reanalysis is the availability of hourly three-dimensional output, which permits the full diurnal cycle to be analyzed. Furthermore, the horizontal grid spacing of 40 km better resolves many physiographic features that host LLJs than other widely used global reanalyses. This makes possible a detailed examination of the systematic onset and cessation of the jets, including time–height representations of the diurnal cycle. The second tool is an index of nocturnal LLJ (NLLJ) activity based upon the vertical structure of the wind’s temporal variation, where the temporal variation is defined in local time. The first available objectively constructed global maps of recurring NLLJs are created from this index, where the various NLLJs can be simultaneously viewed at or near their peak time. These maps not only highlight all of the locations where NLLJs are known to recur, but they also reveal a number of new jets.

The authors examine the basic mechanisms that give rise to the NLLJs identified in four disparate locations, each having a profound influence on the regional climate. The first, the extensively studied Great Plains NLLJ, is used to confirm the veracity of the global analysis and the index of NLLJ activity. It also provides context for three of the many newly identified NLLJs: 1) Tarim Pendi in northwest China; 2) Ethiopia in eastern Africa; and 3) Namibia–Angola in southwest Africa. Jets in these four regions illustrate the variety of physiographic and thermal forcing mechanisms that can produce NLLJs.

Full access
Andrew J. Monaghan
,
Daran L. Rife
,
James O. Pinto
,
Christopher A. Davis
, and
John R. Hannan

Abstract

Extreme rainfall events have important societal impacts: for example, by causing flooding, replenishing reservoirs, and affecting agricultural yields. Previous literature has documented linkages between rainfall extremes and nocturnal low-level jets (NLLJs) over the Great Plains of North America and the La Plata River basin of South America. In this study, the authors utilize a 21-yr, hourly global 40-km reanalysis based on the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) to examine whether NLLJ–rainfall linkages are common elsewhere on the earth. The reanalysis is uniquely suited for the task because of its comparatively high spatial and temporal resolution and because a companion paper demonstrated that it realistically simulates the vertical, horizontal, and diurnal structure of the winds in well-known NLLJ regions. The companion paper employed the reanalysis to identify and describe numerous NLLJs across the planet, including several previously unknown NLLJs.

The authors demonstrate here that the reanalysis reasonably simulates the diurnal cycle, extremes, and spatial structure of rainfall globally compared to satellite-based precipitation datasets and therefore that it is suitable for examining NLLJ–rainfall linkages. A statistical approach is then introduced to categorize nocturnal precipitation extremes as a function of the NLLJ magnitude, wind direction, and wind frequency for January and July. Statistically significant relationships between NLLJs and nocturnal precipitation extremes exist in at least 10 widely disparate regions around the world, some of which are well known and others that have been undocumented until now. The regions include the U.S. Great Plains, Tibet, northwest China, India, Southeast Asia, southeast China, Argentina, Namibia, Botswana, and Ethiopia. Recent studies have recorded widespread changes in the amplitudes of near-surface diurnal heating cycles that in turn play key roles in driving NLLJs. It will thus be important for future work to address how rainfall extremes may be impacted if trends in diurnal cycles cause the position, magnitude, and frequency of NLLJs to change.

Full access
Andrew J. Monaghan
,
David H. Bromwich
,
Jordan G. Powers
, and
Kevin W. Manning

Abstract

In response to the need for improved weather prediction capabilities in support of the U.S. Antarctic Program’s Antarctic field operations, the Antarctic Mesoscale Prediction System (AMPS) was implemented in October 2000. AMPS employs a limited-area model, the Polar fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5), optimized for use over ice sheets. Twice-daily forecasts from the 3.3-km resolution domain of AMPS are joined together to study the climate of the McMurdo region from June 2002 to May 2003. Annual and seasonal distributions of wind direction and speed, 2-m temperature, mean sea level pressure, precipitation, and cloud fraction are presented. This is the first time a model adapted for polar use and with relatively high resolution is used to study the climate of the rugged McMurdo region, allowing several important climatological features to be investigated with unprecedented detail.

Orographic effects exert an important influence on the near-surface winds. Time-mean vortices occur in the lee of Ross Island, perhaps a factor in the high incidence of mesoscale cyclogenesis noted in this area. The near-surface temperature gradient is oriented northwest to southeast with the warmest temperatures in the northwest near McMurdo and the gradient being steepest in winter. The first-ever detailed precipitation maps of the region are presented. Orographic precipitation maxima occur on the southerly slopes of Ross Island and in the mountains to the southwest. The source of the moisture is primarily from the large synoptic systems passing to the northeast and east of Ross Island. A precipitation-shadow effect appears to be an important influence on the low precipitation amounts observed in the McMurdo Dry Valleys. Total cloud fraction primarily depends on the amount of open water in the Ross Sea; the cloudiest region is to the northeast of Ross Island in the vicinity of the Ross Sea polynya.

Full access
Ryan L. Fogt
,
Judith Perlwitz
,
Andrew J. Monaghan
,
David H. Bromwich
,
Julie M. Jones
, and
Gareth J. Marshall

Abstract

This second paper examines the Southern Hemisphere annular mode (SAM) variability from reconstructions, observed indices, and simulations from 17 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) models from 1865 to 2005. Comparisons reveal the models do not fully simulate the duration of strong natural variability within the reconstructions during the 1930s and 1960s.

Seasonal indices are examined to understand the relative roles of forced and natural fluctuations. The models capture the recent (1957–2005) positive SAM trends in austral summer, which reconstructions indicate is the strongest trend during the last 150 yr; ozone depletion is the dominant mechanism driving these trends. In autumn, negative trends after 1930 in the reconstructions are stronger than the recent positive trend. Furthermore, model trends in autumn during 1957–2005 are the most different from observations. Both of these conditions suggest the recent autumn trend is most likely natural climate variability, with external forcing playing a secondary role. Many models also produce significant spring trends during this period not seen in observations. Although insignificant, these differences arise because of vastly different spatial structures in the Southern Hemisphere pressure trends. As the trend differences between models and observations in austral spring have been increasing over the last 30 yr, care must be exercised when examining the future SAM projections and their impacts in this season.

Full access