Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Anthony S. Broccoli x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Robert P. Harnack
and
Anthony S. Broccoli

Abstract

An attempt was made to verify and further investigate a proposed relationship between the location of the maximum east-west sea surface temperature anomaly gradient (ΔSSTA) and the location of the maximum meridional component of the anomalous 700 mb geostrophic wind (VgA) in the North Pacific on a monthly and seasonal time scale. Previous empirical studies, mostly of a case study type, had suggested collocation of maximum values of these variables in the same time period, particularly during the cold seasons. Using 31 years of monthly sea surface temperature and 700 mb height data for the North Pacific, the two variables wore computed for each month and 3-month periods for each 10° longitude sector from 125°W to 155°E, and for each of three latitude bands (55–40°N, 40–25°N, 55–25°N). From these calculations, the spatial relationships of the two variables wore determined by counting frequencies of the collocation of maximum VgA and ΔSSTA for each month or season and latitude band, and by computing correlation coefficients between VgA and ΔSSTA for each month or season and latitude band. Important seasonal and latitudinal differences were found for the strength of the relationship. It was concluded that the proposed relationship was best for the northernmost latitude band (55–40°N), during winter and summer periods, and for 3-month means when compared to monthly means. Statistically significant relationships were found in several instances, indicating that the proposed relationship is probably a manifestation of real physical coupling between the mean and atmosphere.

Full access
Michael P. Erb
,
Charles S. Jackson
, and
Anthony J. Broccoli

Abstract

The long-term climate variations of the Quaternary were primarily influenced by concurrent changes in Earth’s orbit, greenhouse gases, and ice sheets. However, because climate changes over the coming century will largely be driven by changes in greenhouse gases alone, it is important to better understand the separate contributions of each of these forcings in the past. To investigate this, idealized equilibrium simulations are conducted in which the climate is driven by separate changes in obliquity, precession, CO2, and ice sheets. To test the linearity of past climate change, anomalies from these single-forcing experiments are scaled and summed to compute linear reconstructions of past climate, which are then compared to mid-Holocene and last glacial maximum (LGM) snapshot simulations, where all forcings are applied together, as well as proxy climate records. This comparison shows that much of the climate response may be approximated as a linear response to forcings, while some features, such as modeled changes in sea ice and Atlantic meridional overturning circulation (AMOC), appear to be heavily influenced by nonlinearities. In regions where the linear reconstructions replicate the full-forcing experiments well, this analysis can help identify how each forcing contributes to the climate response. Monsoons at the mid-Holocene respond strongly to precession, while LGM monsoons are heavily influenced by the altered greenhouse gases and ice sheets. Contrary to previous studies, ice sheets produce pronounced tropical cooling at the LGM. Compared to proxy temperature records, the linear reconstructions replicate long-term changes well and also show which climate variations are not easily explained as direct responses to long-term forcings.

Full access
Brian J. Soden
,
Anthony J. Broccoli
, and
Richard S. Hemler

Abstract

Uncertainty in cloud feedback is the leading cause of discrepancy in model predictions of climate change. The use of observed or model-simulated radiative fluxes to diagnose the effect of clouds on climate sensitivity requires an accurate understanding of the distinction between a change in cloud radiative forcing and a cloud feedback. This study compares simulations from different versions of the GFDL Atmospheric Model 2 (AM2) that have widely varying strengths of cloud feedback to illustrate the differences between the two and highlight the potential for changes in cloud radiative forcing to be misinterpreted.

Full access
Thomas L. Delworth
,
Anthony J. Broccoli
,
Anthony Rosati
,
Ronald J. Stouffer
,
V. Balaji
,
John A. Beesley
,
William F. Cooke
,
Keith W. Dixon
,
John Dunne
,
K. A. Dunne
,
Jeffrey W. Durachta
,
Kirsten L. Findell
,
Paul Ginoux
,
Anand Gnanadesikan
,
C. T. Gordon
,
Stephen M. Griffies
,
Rich Gudgel
,
Matthew J. Harrison
,
Isaac M. Held
,
Richard S. Hemler
,
Larry W. Horowitz
,
Stephen A. Klein
,
Thomas R. Knutson
,
Paul J. Kushner
,
Amy R. Langenhorst
,
Hyun-Chul Lee
,
Shian-Jiann Lin
,
Jian Lu
,
Sergey L. Malyshev
,
P. C. D. Milly
,
V. Ramaswamy
,
Joellen Russell
,
M. Daniel Schwarzkopf
,
Elena Shevliakova
,
Joseph J. Sirutis
,
Michael J. Spelman
,
William F. Stern
,
Michael Winton
,
Andrew T. Wittenberg
,
Bruce Wyman
,
Fanrong Zeng
, and
Rong Zhang

Abstract

The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved.

Two versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2° latitude × 2.5° longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1° in latitude and longitude, with meridional resolution equatorward of 30° becoming progressively finer, such that the meridional resolution is 1/3° at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments.

The control simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and the land model, both of which act to increase the net surface shortwave radiation in CM2.1, thereby reducing an overall cold bias present in CM2.0; and 3) a reduction of ocean lateral viscosity in the extratropics in CM2.1, which reduces sea ice biases in the North Atlantic.

Both models have been used to conduct a suite of climate change simulations for the 2007 Intergovernmental Panel on Climate Change (IPCC) assessment report and are able to simulate the main features of the observed warming of the twentieth century. The climate sensitivities of the CM2.0 and CM2.1 models are 2.9 and 3.4 K, respectively. These sensitivities are defined by coupling the atmospheric components of CM2.0 and CM2.1 to a slab ocean model and allowing the model to come into equilibrium with a doubling of atmospheric CO2. The output from a suite of integrations conducted with these models is freely available online (see http://nomads.gfdl.noaa.gov/).

Full access