Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Arlene M. Fiore x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Nora R. Mascioli
,
Arlene M. Fiore
,
Michael Previdi
, and
Gustavo Correa

Abstract

Changes in extreme temperatures, heat waves, and heavy rainfall events have adverse effects on human health, air quality, and water resources. With aerosol-only (AER) and greenhouse gas–only (GHG) simulations from 1860 to 2005 in the GFDL CM3 chemistry–climate model, aerosol-induced versus greenhouse gas–induced changes in temperature (summer) and precipitation (all seasons) extremes over the United States are investigated. Small changes in these extremes in the all forcing simulations reflect cancellations between the effects of increasing anthropogenic aerosols and greenhouse gases. In AER, extreme high temperatures and the number of days with temperatures above the 90th percentile decline over most of the United States. The strongest response occurs in the western United States (−2.0°C and −14 days, regionally averaged) and the weakest response occurs in the southeastern United States (−0.6°C and −4.8 days). An opposite-signed response pattern occurs in GHG (+2.3°C and +11.5 days over the western United States and +1.6°C and +7.2 days over the southeastern United States). The similar spatial response patterns in AER versus GHG suggest a preferred regional mode of response that is largely independent of the type of forcing. Extreme precipitation over the eastern United States decreases in AER, particularly in winter, and increases over the eastern and central United States in GHG, particularly in spring. Over the twenty-first century under the representative concentration pathway 8.5 (RCP8.5) emissions scenario, the patterns of extreme temperature and precipitation associated with greenhouse gas forcing dominate.

Full access
Daniel A. Bishop
,
A. Park Williams
,
Richard Seager
,
Arlene M. Fiore
,
Benjamin I. Cook
,
Justin S. Mankin
,
Deepti Singh
,
Jason E. Smerdon
, and
Mukund P. Rao

Abstract

Much of the eastern United States experienced increased precipitation over the twentieth century. Characterizing these trends and their causes is critical for assessing future hydroclimate risks. Here, U.S. precipitation trends are analyzed for 1895–2016, revealing that fall precipitation in the southeastern region north of the Gulf of Mexico (SE-Gulf) increased by nearly 40%, primarily increasing after the mid-1900s. Because fall is the climatological dry season in the SE-Gulf and precipitation in other seasons changed insignificantly, the seasonal precipitation cycle diminished substantially. The increase in SE-Gulf fall precipitation was caused by increased southerly moisture transport from the Gulf of Mexico, which was almost entirely driven by stronger winds associated with enhanced anticyclonic circulation west of the North Atlantic subtropical high (NASH) and not by increases in specific humidity. Atmospheric models forced by observed SSTs and fully coupled models forced by historical anthropogenic forcing do not robustly simulate twentieth-century fall wetting in the SE-Gulf. SST-forced atmospheric models do simulate an intensified anticyclonic low-level circulation around the NASH, but the modeled intensification occurred farther west than observed. CMIP5 analyses suggest an increased likelihood of positive SE-Gulf fall precipitation trends given historical and future GHG forcing. Nevertheless, individual model simulations (both SST forced and fully coupled) only very rarely produce the observed magnitude of the SE-Gulf fall precipitation trend. Further research into model representation of the western ridge of the fall NASH is needed, which will help us to better predict whether twentieth-century increases in SE-Gulf fall precipitation will persist into the future.

Full access
Gabriele G. Pfister
,
Sebastian D. Eastham
,
Avelino F. Arellano
,
Bernard Aumont
,
Kelley C. Barsanti
,
Mary C. Barth
,
Andrew Conley
,
Nicholas A. Davis
,
Louisa K. Emmons
,
Jerome D. Fast
,
Arlene M. Fiore
,
Benjamin Gaubert
,
Steve Goldhaber
,
Claire Granier
,
Georg A. Grell
,
Marc Guevara
,
Daven K. Henze
,
Alma Hodzic
,
Xiaohong Liu
,
Daniel R. Marsh
,
John J. Orlando
,
John M. C. Plane
,
Lorenzo M. Polvani
,
Karen H. Rosenlof
,
Allison L. Steiner
,
Daniel J. Jacob
, and
Guy P. Brasseur

ABSTRACT

To explore the various couplings across space and time and between ecosystems in a consistent manner, atmospheric modeling is moving away from the fractured limited-scale modeling strategy of the past toward a unification of the range of scales inherent in the Earth system. This paper describes the forward-looking Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA), which is intended to become the next-generation community infrastructure for research involving atmospheric chemistry and aerosols. MUSICA will be developed collaboratively by the National Center for Atmospheric Research (NCAR) and university and government researchers, with the goal of serving the international research and applications communities. The capability of unifying various spatiotemporal scales, coupling to other Earth system components, and process-level modularization will allow advances in both fundamental and applied research in atmospheric composition, air quality, and climate and is also envisioned to become a platform that addresses the needs of policy makers and stakeholders.

Free access
Gabriele G. Pfister
,
Sebastian D. Eastham
,
Avelino F. Arellano
,
Bernard Aumont
,
Kelley C. Barsanti
,
Mary C. Barth
,
Andrew Conley
,
Nicholas A. Davis
,
Louisa K. Emmons
,
Jerome D. Fast
,
Arlene M. Fiore
,
Benjamin Gaubert
,
Steve Goldhaber
,
Claire Granier
,
Georg A. Grell
,
Marc Guevara
,
Daven K. Henze
,
Alma Hodzic
,
Xiaohong Liu
,
Daniel R. Marsh
,
John J. Orlando
,
John M. C. Plane
,
Lorenzo M. Polvani
,
Karen H. Rosenlof
,
Allison L. Steiner
,
Daniel J. Jacob
, and
Guy P. Brasseur
Full access
Chelsea R. Thompson
,
Steven C. Wofsy
,
Michael J. Prather
,
Paul A. Newman
,
Thomas F. Hanisco
,
Thomas B. Ryerson
,
David W. Fahey
,
Eric C. Apel
,
Charles A. Brock
,
William H. Brune
,
Karl Froyd
,
Joseph M. Katich
,
Julie M. Nicely
,
Jeff Peischl
,
Eric Ray
,
Patrick R. Veres
,
Siyuan Wang
,
Hannah M. Allen
,
Elizabeth Asher
,
Huisheng Bian
,
Donald Blake
,
Ilann Bourgeois
,
John Budney
,
T. Paul Bui
,
Amy Butler
,
Pedro Campuzano-Jost
,
Cecilia Chang
,
Mian Chin
,
Róisín Commane
,
Gus Correa
,
John D. Crounse
,
Bruce Daube
,
Jack E. Dibb
,
Joshua P. DiGangi
,
Glenn S. Diskin
,
Maximilian Dollner
,
James W. Elkins
,
Arlene M. Fiore
,
Clare M. Flynn
,
Hao Guo
,
Samuel R. Hall
,
Reem A. Hannun
,
Alan Hills
,
Eric J. Hintsa
,
Alma Hodzic
,
Rebecca S. Hornbrook
,
L. Greg Huey
,
Jose L. Jimenez
,
Ralph F. Keeling
,
Michelle J. Kim
,
Agnieszka Kupc
,
Forrest Lacey
,
Leslie R. Lait
,
Jean-Francois Lamarque
,
Junhua Liu
,
Kathryn McKain
,
Simone Meinardi
,
David O. Miller
,
Stephen A. Montzka
,
Fred L. Moore
,
Eric J. Morgan
,
Daniel M. Murphy
,
Lee T. Murray
,
Benjamin A. Nault
,
J. Andrew Neuman
,
Louis Nguyen
,
Yenny Gonzalez
,
Andrew Rollins
,
Karen Rosenlof
,
Maryann Sargent
,
Gregory Schill
,
Joshua P. Schwarz
,
Jason M. St. Clair
,
Stephen D. Steenrod
,
Britton B. Stephens
,
Susan E. Strahan
,
Sarah A. Strode
,
Colm Sweeney
,
Alexander B. Thames
,
Kirk Ullmann
,
Nicholas Wagner
,
Rodney Weber
,
Bernadett Weinzierl
,
Paul O. Wennberg
,
Christina J. Williamson
,
Glenn M. Wolfe
, and
Linghan Zeng

Abstract

This article provides an overview of the NASA Atmospheric Tomography (ATom) mission and a summary of selected scientific findings to date. ATom was an airborne measurements and modeling campaign aimed at characterizing the composition and chemistry of the troposphere over the most remote regions of the Pacific, Southern, Atlantic, and Arctic Oceans, and examining the impact of anthropogenic and natural emissions on a global scale. These remote regions dominate global chemical reactivity and are exceptionally important for global air quality and climate. ATom data provide the in situ measurements needed to understand the range of chemical species and their reactions, and to test satellite remote sensing observations and global models over large regions of the remote atmosphere. Lack of data in these regions, particularly over the oceans, has limited our understanding of how atmospheric composition is changing in response to shifting anthropogenic emissions and physical climate change. ATom was designed as a global-scale tomographic sampling mission with extensive geographic and seasonal coverage, tropospheric vertical profiling, and detailed speciation of reactive compounds and pollution tracers. ATom flew the NASA DC-8 research aircraft over four seasons to collect a comprehensive suite of measurements of gases, aerosols, and radical species from the remote troposphere and lower stratosphere on four global circuits from 2016 to 2018. Flights maintained near-continuous vertical profiling of 0.15–13-km altitudes on long meridional transects of the Pacific and Atlantic Ocean basins. Analysis and modeling of ATom data have led to the significant early findings highlighted here.

Full access