Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Axel Timmermann x
  • Journal of Physical Oceanography x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Axel Timmermann
and
Gerrit Lohmann

Abstract

A simplified box ocean model for the North Atlantic is used to study the influence of multiplicative short-term climate variability on the stability and long-term dynamics of the North Atlantic thermohaline circulation. A timescale separation between fast temperature and slow salinity fluctuations is used to decouple the dynamical equations resulting in a multiplicative stochastic differential equation for salinity. As a result the qualitative behavior and the stability of the thermohaline circulation become a function of the noise level. This can be understood in terms of the concept of noise-induced transitions. Furthermore, the role of nonvanishing noise autocorrelation times on the dynamics of the thermohaline circulation is investigated. Red noise temperature forcing generates new equilibria, which do not have a deterministic counterpart. This study suggests that noise-induced transitions might have climate relevance.

Full access
Jan Abshagen
and
Axel Timmermann

Abstract

The bifurcation behavior of a conceptual heat–salt oscillator model is analyzed by means of numerical continuation methods. A global (homoclinic) bifurcation acts as an organizing center for the dynamics of the simplified convective model. It originates from a codimension-2 bifurcation in an extended parameter space. Comparison with earlier work by Cessi shows that the intriguing stochastic thermohaline excitability can be understood from the bifurcation structure of the model. It is argued that global bifurcations may play a crucial role in determining long-term variability of the thermohaline circulation.

Full access
Adam Hugh Monahan
,
Axel Timmermann
, and
Gerrit Lohmann
Full access