Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Baike Xi x
  • Modern Era Retrospective-Analysis for Research and Applications (MERRA) x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Behnjamin J. Zib, Xiquan Dong, Baike Xi, and Aaron Kennedy


With continual advancements in data assimilation systems, new observing systems, and improvements in model parameterizations, several new atmospheric reanalysis datasets have recently become available. Before using these new reanalyses it is important to assess the strengths and underlying biases contained in each dataset. A study has been performed to evaluate and compare cloud fractions (CFs) and surface radiative fluxes in several of these latest reanalyses over the Arctic using 15 years (1994–2008) of high-quality Baseline Surface Radiation Network (BSRN) observations from Barrow (BAR) and Ny-Alesund (NYA) surface stations. The five reanalyses being evaluated in this study are (i) NASA's Modern-Era Retrospective analysis for Research and Applications (MERRA), (ii) NCEP's Climate Forecast System Reanalysis (CFSR), (iii) NOAA's Twentieth Century Reanalysis Project (20CR), (iv) ECMWF's Interim Reanalysis (ERA-I), and (v) NCEP–Department of Energy (DOE)'s Reanalysis II (R2). All of the reanalyses show considerable bias in reanalyzed CF during the year, especially in winter. The large CF biases have been reflected in the surface radiation fields, as monthly biases in shortwave (SW) and longwave (LW) fluxes are more than 90 (June) and 60 W m−2 (March), respectively, in some reanalyses. ERA-I and CFSR performed the best in reanalyzing surface downwelling fluxes with annual mean biases less than 4.7 (SW) and 3.4 W m−2 (LW) over both Arctic sites. Even when producing the observed CF, radiation flux errors were found to exist in the reanalyses suggesting that they may not always be dependent on CF errors but rather on variations of more complex cloud properties, water vapor content, or aerosol loading within the reanalyses.

Full access
Aaron D. Kennedy, Xiquan Dong, Baike Xi, Shaocheng Xie, Yunyan Zhang, and Junye Chen


Atmospheric states from the Modern-Era Retrospective analysis for Research and Applications (MERRA) and the North American Regional Reanalysis (NARR) are compared with data from the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site, including the ARM continuous forcing product and Cloud Modeling Best Estimate (CMBE) soundings, during the period 1999–2001 to understand their validity for single-column model (SCM) and cloud-resolving model (CRM) forcing datasets. Cloud fraction, precipitation, and radiation information are also compared to determine what errors exist within these reanalyses. For the atmospheric state, ARM continuous forcing and the reanalyses have good agreement with the CMBE sounding information, with biases generally within 0.5 K for temperature, 0.5 m s−1 for wind, and 5% for relative humidity. Larger disagreements occur in the upper troposphere (p < 300 hPa) for temperature, humidity, and zonal wind, and in the boundary layer (p > 800 hPa) for meridional wind and humidity. In these regions, larger errors may exist in derived forcing products. Significant differences exist for vertical pressure velocity, with the largest biases occurring during the spring upwelling and summer downwelling periods. Although NARR and MERRA share many resemblances to each other, ARM outperforms these reanalyses in terms of correlation with cloud fraction. Because the ARM forcing is constrained by observed precipitation that gives the adequate mass, heat, and moisture budgets, much of the precipitation (specifically during the late spring/early summer) is caused by smaller-scale forcing that is not captured by the reanalyses. While reanalysis-based forcing appears to be feasible for the majority of the year at this location, it may have limited usage during the late spring and early summer, when convection is common at the ARM SGP site. Both NARR and MERRA capture the seasonal variation of cloud fractions (CFs) observed by ARM radar–lidar and Geostationary Operational Environmental Satellite (GOES) with high correlations (0.92–0.78) but with negative biases of 14% and 3%, respectively. Compared to the ARM observations, MERRA shows better agreement for both shortwave (SW) and longwave (LW) fluxes except for LW-down (due to a negative bias in water vapor): NARR has significant positive bias for SW-down and negative bias for LW-down under clear-sky and all-sky conditions. The NARR biases result from a combination of too few clouds and a lack of sufficient extinction by aerosols and water vapor in the atmospheric column. The results presented here represent only one location for a limited period, and more comparisons at different locations and longer periods are needed.

Full access