Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Barbara G. Brown x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Barbara G. Brown
,
Richard W. Katz
, and
Allan H. Murphy

Abstract

A general approach for modeling wind speed and wind power is described. Because wind power is a function of wind speed, the methodology is based on the development of a model of wind speed. Values of wind power are estimated by applying the appropriate transformations to values of wind speed. The wind speed modeling approach takes into account several basic features of wind speed data, including autocorrelation, non-Gaussian distribution, and diurnal nonstationarity. The positive correlation between consecutive wind speed observations is taken into account by fitting an autoregressive process to wind speed data transformed to make their distribution approximately Gaussian and standardized to remove diurnal nonstationarity.

As an example, the modeling approach is applied to a small set of hourly wind speed data from the Pacific Northwest. Use of the methodology for simulating and forecasting wind speed and wind power is discussed and an illustration of each of these types of applications is presented. To take into account the uncertainty of wind speed and wind power forecasts, techniques are presented for expressing the forecasts either in terms of confidence intervals or in terms of probabilities.

Full access
Barbara G. Brown
,
Richard W. Katz
, and
Allan H. Murphy

Abstract

The use of a concept called a precipitation “event” to obtain information regarding certain statistical properties of precipitation time series at a particular location and for a specific application (e.g., for modeling erosion) is described. Exploratory data analysis is used to examine several characteristics of more than 31 years of primitive precipitation events based on hourly precipitation data at Salem, Oregon. A primitive precipitation event is defined as one or more consecutive hours with at least 0.01 inches (0.25 mm) of precipitation. The characteristics of the events that are considered include the duration, magnitude, average intensity and maximum intensity of the event and the number of hours separating consecutive events.

By means of exploratory analysis of the characteristics of the precipitation events, it is demonstrated that the marginal (i.e., unconditional) distributions of the characteristics are positively skewed. Examination of the conditional distributions of some pairs of characteristics indicates the existence of some relationships among the characteristics. For example, it is found that average intensity and maximum intensity are quite dependent on the event duration. The existence and forms of these relationships indicate that the assumption commonly made in stochastic models of hourly precipitation time series that the intensities (i.e., hourly amounts within an event) are independent and identically distributed must be violated. Again using exploratory data analysis, it is shown that the hourly intensities at Salem are, in fact, stochastically increasing and positively associated within a precipitation event.

Full access
Ben C. Bernstein
,
Frank McDonough
,
Marcia K. Politovich
,
Barbara G. Brown
,
Thomas P. Ratvasky
,
Dean R. Miller
,
Cory A. Wolff
, and
Gary Cunning

Abstract

The “current icing potential” (CIP) algorithm combines satellite, radar, surface, lightning, and pilot-report observations with model output to create a detailed three-dimensional hourly diagnosis of the potential for the existence of icing and supercooled large droplets. It uses a physically based situational approach that is derived from basic and applied cloud physics, combined with forecaster and onboard flight experience from field programs. Both fuzzy logic and decision-tree logic are applied in this context. CIP determines the locations of clouds and precipitation and then estimates the potential for the presence of supercooled liquid water and supercooled large droplets within a given airspace. First developed in the winter of 1997/98, CIP became an operational National Weather Service and Federal Aviation Administration product in 2002, providing real-time diagnoses that allow users to make route-specific decisions to avoid potentially hazardous icing. The CIP algorithm, its individual components, and the logic behind them are described.

Full access
Steven D. Miller
,
Courtney E. Weeks
,
Randy G. Bullock
,
John M. Forsythe
,
Paul A. Kucera
,
Barbara G. Brown
,
Cory A. Wolff
,
Philip T. Partain
,
Andrew S. Jones
, and
David B. Johnson

Abstract

Clouds pose many operational hazards to the aviation community in terms of ceilings and visibility, turbulence, and aircraft icing. Realistic descriptions of the three-dimensional (3D) distribution and temporal evolution of clouds in numerical weather prediction models used for flight planning and routing are therefore of central importance. The introduction of satellite-based cloud radar (CloudSat) and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) sensors to the National Aeronautics and Space Administration A-Train is timely in light of these needs but requires a new paradigm of model-evaluation tools that are capable of exploiting the vertical-profile information. Early results from the National Center for Atmospheric Research Model Evaluation Toolkit (MET), augmented to work with the emergent satellite-based active sensor observations, are presented here. Existing horizontal-plane statistical evaluation techniques have been adapted to operate on observations in the vertical plane and have been extended to 3D object evaluations, leveraging blended datasets from the active and passive A-Train sensors. Case studies of organized synoptic-scale and mesoscale distributed cloud systems are presented to illustrate the multiscale utility of the MET tools. Definition of objects on the basis of radar-reflectivity thresholds was found to be strongly dependent on the model’s ability to resolve details of the cloud’s internal hydrometeor distribution. Contoured-frequency-by-altitude diagrams provide a useful mechanism for evaluating the simulated and observed 3D distributions for regional domains. The expanded MET provides a new dimension to model evaluation and positions the community to better exploit active-sensor satellite observing systems that are slated for launch in the near future.

Full access