Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Ben Kravitz x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Ben Kravitz
,
Alan Robock
, and
John C. Moore
Free access
Ben Kravitz
,
Alan Robock
, and
Douglas G. MacMartin
Free access
Ben Kravitz
,
Douglas G. MacMartin
,
Philip J. Rasch
, and
Andrew J. Jarvis

Abstract

The authors describe a new method of comparing different climate forcing agents (e.g., CO2 concentration, CH4 concentration, and total solar irradiance) in climate models that circumvents many of the difficulties associated with explicit calculations of efficacy. This is achieved by introducing an explicit feedback loop external to a climate model that adjusts one forcing agent to balance another while keeping global-mean surface temperature constant. The convergence time of this feedback loop can be adjusted, allowing for comparisons of forcing agents to be achieved with relatively short simulations. Comparisons between forcing agents are highly linear in concordance with predicted scaling relationships; for example, the global-mean climate response to a doubling of the CO2 concentration is equivalent to that of a 2.1% change in total solar irradiance. This result is independent of the magnitude of the forcing agent (within the range of radiative forcings considered here) and is consistent across two different climate models.

Full access
Jin-Ho Yoon
,
Ben Kravitz
,
Philip J. Rasch
,
S.-Y. Simon Wang
,
Robert R. Gillies
, and
Lawrence Hipps
Full access
Simone Tilmes
,
Jadwiga H. Richter
,
Ben Kravitz
,
Douglas G. MacMartin
,
Michael J. Mills
,
Isla R. Simpson
,
Anne S. Glanville
,
John T. Fasullo
,
Adam S. Phillips
,
Jean-Francois Lamarque
,
Joseph Tribbia
,
Jim Edwards
,
Sheri Mickelson
, and
Siddhartha Ghosh

Abstract

This paper describes the Stratospheric Aerosol Geoengineering Large Ensemble (GLENS) project, which promotes the use of a unique model dataset, performed with the Community Earth System Model, with the Whole Atmosphere Community Climate Model as its atmospheric component [CESM1(WACCM)], to investigate global and regional impacts of geoengineering. The performed simulations were designed to achieve multiple simultaneous climate goals, by strategically placing sulfur injections at four different locations in the stratosphere, unlike many earlier studies that targeted globally averaged surface temperature by placing injections in regions at or around the equator. This advanced approach reduces some of the previously found adverse effects of stratospheric aerosol geoengineering, including uneven cooling between the poles and the equator and shifts in tropical precipitation. The 20-member ensemble increases the ability to distinguish between forced changes and changes due to climate variability in global and regional climate variables in the coupled atmosphere, land, sea ice, and ocean system. We invite the broader community to perform in-depth analyses of climate-related impacts and to identify processes that lead to changes in the climate system as the result of a strategic application of stratospheric aerosol geoengineering.

Full access