Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Bernard Pinty x
- Journal of Climate x
- Refine by Access: Content accessible to me x
Abstract
Two-stream approximations have been used widely and for a long time in the field of radiative transfer through vegetation in various contexts and in the last 10 years also to model the hemispheric reflectance of vegetated surfaces in numerical models of the earth-atmosphere system.
For a plane-parallel and turbid vegetation medium, the existence of rotational invariance allows the application of a conventional two-stream approximation to the phase function, based on an expansion in Legendre Polynomials. Three conditions have to be fulfilled to nuke this reduction possible in the case of vegetation. The scattering function of single leaves must be bi-Lambertian, the azimuthal distribution of leaf normals must be uniform, and the azimuthally averaged Leaf Area Normal Distribution (LAND) must be either uniform or planophile. The first and second assumptions have been shown to he acceptable by other researchers and. in fact, are usually assumed explicitly or implicitly when dealing with radiative transfer through canopies. The third one, on the shape of the azimuthally averaged LAND, although investigated before, is subjected to a detailed sensitivity test in this study, using a set of synthetic LAND's as well as experimental data for 17 plant canopies.
It is shown that the radiative energy flux equations are relatively insensitive to the exact form of the LAND. The experimental Ross functions and hemispheric reflectances lie between those for the synthetic cases of planophile and erectophile LANDS. However, only the uniform and planophile LANDs lead to canopy hemispheric reflectances, which are markedly different from one another.
The analytical two-stream solutions for the either the planophile or the uniform LAND cases may be used to model the radiative fluxes through plant canopies in the solar spectral range. The choice between the two for any particular case must he made on the basis of experimental data.
Abstract
Two-stream approximations have been used widely and for a long time in the field of radiative transfer through vegetation in various contexts and in the last 10 years also to model the hemispheric reflectance of vegetated surfaces in numerical models of the earth-atmosphere system.
For a plane-parallel and turbid vegetation medium, the existence of rotational invariance allows the application of a conventional two-stream approximation to the phase function, based on an expansion in Legendre Polynomials. Three conditions have to be fulfilled to nuke this reduction possible in the case of vegetation. The scattering function of single leaves must be bi-Lambertian, the azimuthal distribution of leaf normals must be uniform, and the azimuthally averaged Leaf Area Normal Distribution (LAND) must be either uniform or planophile. The first and second assumptions have been shown to he acceptable by other researchers and. in fact, are usually assumed explicitly or implicitly when dealing with radiative transfer through canopies. The third one, on the shape of the azimuthally averaged LAND, although investigated before, is subjected to a detailed sensitivity test in this study, using a set of synthetic LAND's as well as experimental data for 17 plant canopies.
It is shown that the radiative energy flux equations are relatively insensitive to the exact form of the LAND. The experimental Ross functions and hemispheric reflectances lie between those for the synthetic cases of planophile and erectophile LANDS. However, only the uniform and planophile LANDs lead to canopy hemispheric reflectances, which are markedly different from one another.
The analytical two-stream solutions for the either the planophile or the uniform LAND cases may be used to model the radiative fluxes through plant canopies in the solar spectral range. The choice between the two for any particular case must he made on the basis of experimental data.
Abstract
The Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky surface albedos are compared with similar products generated on the basis of the Multiangle Imaging SpectroRadiometer (MISR) surface bidirectional reflectance factor (BRF) model parameters available for the year 2005. The analysis is achieved using global-scale statistics to characterize the broad patterns of these two independent albedo datasets. The results obtained in M. Taberner et al. have shown that robust statistics can be established and that both datasets are highly correlated. As a result, the slight but consistent biases and trends identified in this paper, derived from statistics obtained on a global basis, should be considered sufficiently reliable to merit further investigation. The present paper reports on the zonal- and seasonal-mean differences retrieved from the analysis of the MODIS and MISR surface albedo broadband products. The MISR − MODIS differences exhibit a systematic positive bias or offset in the range of 0.01–0.03 depending on the spectral domain of interest. Results obtained in the visible domain exhibit a well-marked and very consistent meridional trend featuring a “smile effect” such that the MISR − MODIS differences reach maxima at the highest latitudes in both hemispheres. The analysis of seasonal variations observed in MISR and MODIS albedo products reveals that, in the visible domain, the MODIS albedos generate weaker seasonal changes than MISR and that the differences increase poleward from the equatorial regions. A detailed investigation of MODIS and MISR aerosol optical depth retrievals suggests that this large-scale meridional trend is probably not caused by differences in the aerosol load estimated by each instrument. The scale and regularity of the meridional trend suggests that this may be due to the particular sampling regime of each instrument in the viewing azimuthal planes and/or approximations in the atmospheric correction processes. If this is the case, then either MODIS is underestimating, or MISR overestimating, the surface anisotropy or both.
Abstract
The Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky surface albedos are compared with similar products generated on the basis of the Multiangle Imaging SpectroRadiometer (MISR) surface bidirectional reflectance factor (BRF) model parameters available for the year 2005. The analysis is achieved using global-scale statistics to characterize the broad patterns of these two independent albedo datasets. The results obtained in M. Taberner et al. have shown that robust statistics can be established and that both datasets are highly correlated. As a result, the slight but consistent biases and trends identified in this paper, derived from statistics obtained on a global basis, should be considered sufficiently reliable to merit further investigation. The present paper reports on the zonal- and seasonal-mean differences retrieved from the analysis of the MODIS and MISR surface albedo broadband products. The MISR − MODIS differences exhibit a systematic positive bias or offset in the range of 0.01–0.03 depending on the spectral domain of interest. Results obtained in the visible domain exhibit a well-marked and very consistent meridional trend featuring a “smile effect” such that the MISR − MODIS differences reach maxima at the highest latitudes in both hemispheres. The analysis of seasonal variations observed in MISR and MODIS albedo products reveals that, in the visible domain, the MODIS albedos generate weaker seasonal changes than MISR and that the differences increase poleward from the equatorial regions. A detailed investigation of MODIS and MISR aerosol optical depth retrievals suggests that this large-scale meridional trend is probably not caused by differences in the aerosol load estimated by each instrument. The scale and regularity of the meridional trend suggests that this may be due to the particular sampling regime of each instrument in the viewing azimuthal planes and/or approximations in the atmospheric correction processes. If this is the case, then either MODIS is underestimating, or MISR overestimating, the surface anisotropy or both.