Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Bin He x
  • Journal of Hydrometeorology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Yafeng Zhang
,
Bin He
,
Lanlan Guo
, and
Daochen Liu

Abstract

A time lag exists between precipitation P falling and being converted into terrestrial water. The responses of terrestrial water storage (TWS) and its individual components to P over the global scale, which are vital for understanding the interactions and mechanisms between climatic variables and hydrological components, are not well constrained. In this study, relying on land surface models, we isolate five component storage anomalies from TWS anomalies (TWSA) derived from the Gravity Recovery and Climate Experiment mission (GRACE): canopy water storage anomalies (CWSA), surface water storage anomalies (SWSA), snow water equivalent anomalies (SWEA), soil moisture storage anomalies (SMSA), and groundwater storage anomalies (GWSA). The responses of TWSA and of the individual components of TWSA to P are then evaluated over 168 global basins. The lag between TWSA and P is quantified by calculating the correlation coefficients between GRACE-based TWSA and P for different time lags, then identifying the lag (measured in months) corresponding to the maximum correlation coefficient. A multivariate regression model is used to explore the relationship between climatic and basin characteristics and the lag between TWSA and P. Results show that the spatial distribution of TWSA trend presents a similar global pattern to that of P for the period January 2004–December 2013. TWSA is positively related to P over basins but with lags of variable duration. The lags are shorter in the low- and midlatitude basins (1–2 months) than those in the high-latitude basins (6–9 months). The spatial patterns of the maximum correlations and the corresponding lags between individual components of the TWSA and P are consistent with those of the GRACE-based analysis, except for SWEA (3–8 months) and CWSA (0 months). The lags between GWSA, SMSA, and SWSA to P can be arranged as GWSA > SMSA ≥ SWSA. Regression analysis results show that the lags between TWSA and P are related to the mean temperature, mean precipitation, mean latitude, mean longitude, mean elevation, and mean slope.

Full access
Ziqian Zhong
,
Bin He
,
Lanlan Guo
, and
Yafeng Zhang

Abstract

A topic of ongoing debate on the application of PDSI is whether to use the original version of the PDSI or a self-calibrating form, as well as which method to use for calculating potential evapotranspiration (PET). In this study, the performances of four forms of the PDSI, including the original PDSI based on the Penman–Monteith method for calculating PET (ET p ), the PDSI based on the crop reference evapotranspiration method for calculating PET (ET0), the self-calibrating PDSI (scPDSI) based on ET p , and the scPDSI based on ET0, were evaluated in China using the normalized difference vegetation index (NDVI), modeled soil moisture anomalies (SMA), and the terrestrial water storage deficit index (WSDI). The interannual variations of all forms of PDSI agreed well with each other and presented a weak increasing trend, suggesting a climate wetting in China from 1961 to 2013. PDSI-ET0 correlated more closely with NDVI anomalies, SMA, and WSDI than did PDSI-ET p in northern China, especially in northeastern China, while PDSI-ET p correlated more closely with SMA and WSDI in southern China. PDSI-ET0 performed better than PDSI-ET p in regions where the annual average rainfall is between 350 and 750 mm yr−1. The spatial comparability of scPDSI was better than that of PDSI, while the PDSI correlated more closely with NDVI anomalies, SMA, and WSDI than did scPDSI in most regions of China. Knowledge from this study provides important information for the choice of PDSI forms when it is applied for different practices.

Full access
Jie He
,
Puyu Feng
,
Bin Wang
,
Wei Zhuang
,
Yongqiang Zhang
,
De Li Liu
,
Jamie Cleverly
,
Alfredo Huete
, and
Qiang Yu

Abstract

Global warming and anthropogenic activities have imposed noticeable impacts on rainfall pattern changes at both spatial and temporal scales in recent decades. Systematic diagnosis of rainfall pattern changes is urgently needed at spatiotemporal scales for a deeper understanding of how climate change produces variations in rainfall patterns. The objective of this study was to identify rainfall pattern changes systematically under climate change at a subcontinental scale along a rainfall gradient ranging from 1800 to 200 mm yr−1 by analyzing centennial rainfall data covering 230 sites from 1910 to 2017 in the Northern Territory of Australia. Rainfall pattern changes were characterized by considering aspects of trends and periodicity of annual rainfall, abrupt changes, rainfall distribution, and extreme rainfall events. Our results illustrated that rainfall patterns in northern Australia have changed significantly compared with the early period of the twentieth century. Specifically, 1) a significant increasing trend in annual precipitation associated with greater variation in recent decades was observed over the entire study area, 2) temporal variations represented a mean rainfall periodicity of 27 years over wet to dry regions, 3) an abrupt change of annual rainfall amount occurred consistently in both humid and arid regions during the 1966–75 period, and 4) partitioned long-term time series of rainfall demonstrated a wetter rainfall distribution trend across coastal to inland areas that was associated with more frequent extreme rainfall events in recent decades. The findings of this study could facilitate further studies on the mechanisms of climate change that influence rainfall pattern changes.

Significance Statement

Characterizing long-term rainfall pattern changes under different rainfall conditions is important to understand the impacts of climate change. We conducted diagnosis of centennial rainfall pattern changes across wet to dry regions in northern Australia and found that rainfall patterns have noticeably changed in recent decades. The entire region has a consistent increasing trend of annual rainfall with higher variation. Meanwhile, the main shifting period of rainfall pattern was during 1966–75. Although annual rainfall seems to become wetter with an increasing trend, more frequent extreme rainfall events should also be noticed for assessing the impacts of climate changes. The findings support further study to understand long-term rainfall pattern changes under climate change.

Full access