Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Bjorn Lambrigtsen x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Scott A. Braun
,
Ramesh Kakar
,
Edward Zipser
,
Gerald Heymsfield
,
Cerese Albers
,
Shannon Brown
,
Stephen L. Durden
,
Stephen Guimond
,
Jeffery Halverson
,
Andrew Heymsfield
,
Syed Ismail
,
Bjorn Lambrigtsen
,
Timothy Miller
,
Simone Tanelli
,
Janel Thomas
, and
Jon Zawislak

In August–September 2010, NASA, NOAA, and the National Science Foundation (NSF) conducted separate but closely coordinated hurricane field campaigns, bringing to bear a combined seven aircraft with both new and mature observing technologies. NASA's Genesis and Rapid Intensification Processes (GRIP) experiment, the subject of this article, along with NOAA's Intensity Forecasting Experiment (IFEX) and NSF's Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) experiment, obtained unprecedented observations of the formation and intensification of tropical cyclones. The major goal of GRIP was to better understand the physical processes that control hurricane formation and intensity change, specifically the relative roles of environmental and inner-core processes. A key focus of GRIP was the application of new technologies to address this important scientific goal, including the first ever use of the unmanned Global Hawk aircraft for hurricane science operations. NASA and NOAA conducted coordinated flights to thoroughly sample the rapid intensification (RI) of Hurricanes Earl and Karl. The tri-agency aircraft teamed up to perform coordinated flights for the genesis of Hurricane Karl and Tropical Storm Matthew and the nonredevelopment of the remnants of Tropical Storm Gaston. The combined GRIP– IFEX–PREDICT datasets, along with remote sensing data from a variety of satellite platforms [Geostationary Operational Environmental Satellite (GOES), Tropical Rainfall Measuring Mission (TRMM), Aqua, Terra, CloudSat, and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)], will contribute to advancing understanding of hurricane formation and intensification. This article summarizes the GRIP experiment, the missions flown, and some preliminary findings.

Full access

AIRS

Improving Weather Forecasting and Providing New Data on Greenhouse Gases

MOUSTAFA T. CHAHINE
,
THOMAS S. PAGANO
,
HARTMUT H. AUMANN
,
ROBERT ATLAS
,
CHRISTOPHER BARNET
,
JOHN BLAISDELL
,
LUKE CHEN
,
MURTY DIVAKARLA
,
ERIC J. FETZER
,
MITCH GOLDBERG
,
CATHERINE GAUTIER
,
STEPHANIE GRANGER
,
SCOTT HANNON
,
FREDRICK W. IRION
,
RAMESH KAKAR
,
EUGENIA KALNAY
,
BJORN H. LAMBRIGTSEN
,
SUNG-YUNG LEE
,
JOHN Le MARSHALL
,
W. WALLACE MCMILLAN
,
LARRY MCMILLIN
,
EDWARD T. OLSEN
,
HENRY REVERCOMB
,
PHILIP ROSENKRANZ
,
WILLIAM L. SMITH
,
DAVID STAELIN
,
L. LARRABEE STROW
,
JOEL SUSSKIND
,
DAVID TOBIN
,
WALTER WOLF
, and
LIHANG ZHOU

The Atmospheric Infrared Sounder (AIRS) and its two companion microwave sounders, AMSU and HSB were launched into polar orbit onboard the NASA Aqua Satellite in May 2002. NASA required the sounding system to provide high-quality research data for climate studies and to meet NOAA's requirements for improving operational weather forecasting. The NOAA requirement translated into global retrieval of temperature and humidity profiles with accuracies approaching those of radiosondes. AIRS also provides new measurements of several greenhouse gases, such as CO2, CO, CH4, O3, SO2, and aerosols.

The assimilation of AIRS data into operational weather forecasting has already demonstrated significant improvements in global forecast skill. At NOAA/NCEP, the improvement in the forecast skill achieved at 6 days is equivalent to gaining an extension of forecast capability of six hours. This improvement is quite significant when compared to other forecast improvements over the last decade. In addition to NCEP, ECMWF and the Met Office have also reported positive forecast impacts due AIRS.

AIRS is a hyperspectral sounder with 2,378 infrared channels between 3.7 and 15.4 μm. NOAA/NESDIS routinely distributes AIRS data within 3 hours to NWP centers around the world. The AIRS design represents a breakthrough in infrared space instrumentation with measurement stability and accuracies far surpassing any current research or operational sounder..The results we describe in this paper are “work in progress,” and although significant accomplishments have already been made much more work remains in order to realize the full potential of this suite of instruments.

Full access
Svetla M. Hristova-Veleva
,
P. Peggy Li
,
Brian Knosp
,
Quoc Vu
,
F. Joseph Turk
,
William L. Poulsen
,
Ziad Haddad
,
Bjorn Lambrigtsen
,
Bryan W. Stiles
,
Tsae-Pyng Shen
,
Noppasin Niamsuwan
,
Simone Tanelli
,
Ousmane Sy
,
Eun-Kyoung Seo
,
Hui Su
,
Deborah G. Vane
,
Yi Chao
,
Philip S. Callahan
,
R. Scott Dunbar
,
Michael Montgomery
,
Mark Boothe
,
Vijay Tallapragada
,
Samuel Trahan
,
Anthony J. Wimmers
,
Robert Holz
,
Jeffrey S. Reid
,
Frank Marks
,
Tomislava Vukicevic
,
Saiprasanth Bhalachandran
,
Hua Leighton
,
Sundararaman Gopalakrishnan
,
Andres Navarro
, and
Francisco J. Tapiador
Full access
Svetla M. Hristova-Veleva
,
P. Peggy Li
,
Brian Knosp
,
Quoc Vu
,
F. Joseph Turk
,
William L. Poulsen
,
Ziad Haddad
,
Bjorn Lambrigtsen
,
Bryan W. Stiles
,
Tsae-Pyng Shen
,
Noppasin Niamsuwan
,
Simone Tanelli
,
Ousmane Sy
,
Eun-Kyoung Seo
,
Hui Su
,
Deborah G. Vane
,
Yi Chao
,
Philip S. Callahan
,
R. Scott Dunbar
,
Michael Montgomery
,
Mark Boothe
,
Vijay Tallapragada
,
Samuel Trahan
,
Anthony J. Wimmers
,
Robert Holz
,
Jeffrey S. Reid
,
Frank Marks
,
Tomislava Vukicevic
,
Saiprasanth Bhalachandran
,
Hua Leighton
,
Sundararaman Gopalakrishnan
,
Andres Navarro
, and
Francisco J. Tapiador

Abstract

Tropical cyclones (TCs) are among the most destructive natural phenomena with huge societal and economic impact. They form and evolve as the result of complex multiscale processes and nonlinear interactions. Even today the understanding and modeling of these processes is still lacking. A major goal of NASA is to bring the wealth of satellite and airborne observations to bear on addressing the unresolved scientific questions and improving our forecast models. Despite their significant amount, these observations are still underutilized in hurricane research and operations due to the complexity associated with finding and bringing together semicoincident and semicontemporaneous multiparameter data that are needed to describe the multiscale TC processes. Such data are traditionally archived in different formats, with different spatiotemporal resolution, across multiple databases, and hosted by various agencies. To address this shortcoming, NASA supported the development of the Jet Propulsion Laboratory (JPL) Tropical Cyclone Information System (TCIS)—a data analytic framework that integrates model forecasts with multiparameter satellite and airborne observations, providing interactive visualization and online analysis tools. TCIS supports interrogation of a large number of atmospheric and ocean variables, allowing for quick investigation of the structure of the tropical storms and their environments. This paper provides an overview of the TCIS’s components and features. It also summarizes recent pilot studies, providing examples of how the TCIS has inspired new research, helping to increase our understanding of TCs. The goal is to encourage more users to take full advantage of the novel capabilities. TCIS allows atmospheric scientists to focus on new ideas and concepts rather than painstakingly gathering data scattered over several agencies.

Free access
Edward P. Nowottnick
,
Angela K. Rowe
,
Amin R. Nehrir
,
Jonathan A. Zawislak
,
Aaron J. Piña
,
Will McCarty
,
Rory A. Barton-Grimley
,
Kristopher M. Bedka
,
J. Ryan Bennett
,
Alan Brammer
,
Megan E. Buzanowicz
,
Gao Chen
,
Shu-Hua Chen
,
Shuyi S. Chen
,
Peter R. Colarco
,
John W. Cooney
,
Ewan Crosbie
,
James Doyle
,
Thorsten Fehr
,
Richard A. Ferrare
,
Steven D. Harrah
,
Svetla M. Hristova-Veleva
,
Bjorn H. Lambrigtsen
,
Quinton A. Lawton
,
Allan Lee
,
Eleni Marinou
,
Elinor R. Martin
,
Griša Močnik
,
Edoardo Mazza
,
Raquel Rodriguez Monje
,
Kelly M. Núñez Ocasio
,
Zhaoxia Pu
,
Manikandan Rajagopal
,
Jeffrey S. Reid
,
Claire E. Robinson
,
Rosimar Rios-Berrios
,
Benjamin D. Rodenkirch
,
Naoko Sakaeda
,
Vidal Salazar
,
Michael A. Shook
,
Leigh Sinclair
,
Gail M. Skofronick-Jackson
,
K. Lee Thornhill
,
Ryan D. Torn
,
David P. Van Gilst
,
Peter G. Veals
,
Holger Vömel
,
Sun Wong
,
Shun-Nan Wu
,
Luke D. Ziemba
, and
Edward. J. Zipser

Abstract

The NASA Convective Processes Experiment - Cabo Verde (CPEX-CV) field campaign took place in September 2022 out of Sal Island, Cabo Verde. A unique payload aboard the NASA DC-8 aircraft equipped with advanced remote sensing and in situ instrumentation, in conjunction with radiosonde launches and satellite observations, allowed CPEX-CV to target the coupling between atmospheric dynamics, marine boundary layer properties, convection, and the dust-laden Saharan Air Layer in the data-sparse tropical East Atlantic region. CPEX-CV provided measurements of African Easterly Wave environments, diurnal cycle impacts on convective lifecycle, and several Saharan dust outbreaks, including the highest dust optical depth observed by the DC-8 interacting with what would become Tropical Storm Hermine. Preliminary results from CPEX-CV underscore the positive impact of dedicated tropical East Atlantic observations on downstream forecast skill, including sampling environmental forcings impacting the development of several non-developing and developing convective systems such as Hurricanes Fiona and Ian. Combined airborne radar, lidar, and radiometer measurements uniquely provide near-storm environments associated with convection on various spatiotemporal scales and, with in situ observations, insights into controls on Saharan dust properties with transport. The DC-8 also collaborated with the European Space Agency to perform coordinated validation flights under the Aeolus spaceborne wind lidar and over the Mindelo ground site, highlighting the enhanced sampling potential through partnership opportunities. CPEX-CV engaged in professional development through dedicated team building exercises that equipped the team with a cohesive approach for targeting CPEX-CV science objectives and promoted active participation of scientists across all career stages.

Open access