Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Byron W. Blomquist x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Vidhi Bharti
,
Eric Schulz
,
Christopher W. Fairall
,
Byron W. Blomquist
,
Yi Huang
,
Alain Protat
,
Steven T. Siems
, and
Michael J. Manton

Abstract

Given the large uncertainties in surface heat fluxes over the Southern Ocean, an assessment of fluxes obtained by European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) product, the Australian Integrated Marine Observing System (IMOS) routine observations, and the Objectively Analyzed Air–Sea Heat Fluxes (OAFlux) project hybrid dataset is performed. The surface fluxes are calculated using the COARE 3.5 bulk algorithm with in situ data obtained from the NOAA Physical Sciences Division flux system during the Clouds, Aerosols, Precipitation, Radiation, and Atmospheric Composition over the Southern Ocean (CAPRICORN) experiment on board the R/V Investigator during a voyage (March–April 2016) in the Australian sector of the Southern Ocean (43°–53°S). ERA-Interim and OAFlux data are further compared with the Southern Ocean Flux Station (SOFS) air–sea flux moored surface float deployed for a year (March 2015–April 2016) at ~46.7°S, 142°E. The results indicate that ERA-Interim (3 hourly at 0.25°) and OAFlux (daily at 1°) estimate sensible heat flux H s accurately to within ±5 W m−2 and latent heat flux H l to within ±10 W m−2. ERA-Interim gives a positive bias in H s at low latitudes (<47°S) and in H l at high latitudes (>47°S), and OAFlux displays consistently positive bias in H l at all latitudes. No systematic bias with respect to wind or rain conditions was observed. Although some differences in the bulk flux algorithms are noted, these biases can be largely attributed to the uncertainties in the observations used to derive the flux products.

Full access
Sophia E. Brumer
,
Christopher J. Zappa
,
Ian M. Brooks
,
Hitoshi Tamura
,
Scott M. Brown
,
Byron W. Blomquist
,
Christopher W. Fairall
, and
Alejandro Cifuentes-Lorenzen

Abstract

Concurrent wavefield and turbulent flux measurements acquired during the Southern Ocean (SO) Gas Exchange (GasEx) and the High Wind Speed Gas Exchange Study (HiWinGS) projects permit evaluation of the dependence of the whitecap coverage W on wind speed, wave age, wave steepness, mean square slope, and wind-wave and breaking Reynolds numbers. The W was determined from over 600 high-frequency visible imagery recordings of 20 min each. Wave statistics were computed from in situ and remotely sensed data as well as from a WAVEWATCH III hindcast. The first shipborne estimates of W under sustained 10-m neutral wind speeds U 10N of 25 m s−1 were obtained during HiWinGS. These measurements suggest that W levels off at high wind speed, not exceeding 10% when averaged over 20 min. Combining wind speed and wave height in the form of the wind-wave Reynolds number resulted in closely agreeing models for both datasets, individually and combined. These are also in good agreement with two previous studies. When expressing W in terms of wavefield statistics only or wave age, larger scatter is observed and/or there is little agreement between SO GasEx, HiWinGS, and previously published data. The wind speed–only parameterizations deduced from the SO GasEx and HiWinGS datasets agree closely and capture more of the observed W variability than Reynolds number parameterizations. However, these wind speed–only models do not agree as well with previous studies than the wind-wave Reynolds numbers.

Full access
Joel R. Norris
,
F. Martin Ralph
,
Reuben Demirdjian
,
Forest Cannon
,
Byron Blomquist
,
Christopher W. Fairall
,
J. Ryan Spackman
,
Simone Tanelli
, and
Duane E. Waliser

Abstract

Combined airborne, shipboard, and satellite measurements provide the first observational assessment of all major terms of the vertically integrated water vapor (IWV) budget for a 150 km × 160 km region within the core of a strong atmospheric river over the northeastern Pacific Ocean centered on 1930 UTC 5 February 2015. Column-integrated moisture flux convergence is estimated from eight dropsonde profiles, and surface rain rate is estimated from tail Doppler radar reflectivity measurements. Dynamical convergence of water vapor (2.20 ± 0.12 mm h−1) nearly balances estimated precipitation (2.47 ± 0.41 mm h−1), but surface evaporation (0.0 ± 0.05 mm h−1) is negligible. Advection of drier air into the budget region (−1.50 ± 0.21 mm h−1) causes IWV tendency from the sum of all terms to be negative (−1.66 ± 0.45 mm h−1). An independent estimate of IWV tendency obtained from the difference between IWV measured by dropsonde and retrieved by satellite 3 h earlier is less negative (−0.52 ± 0.24 mm h−1), suggesting the presence of substantial temporal variability that is smoothed out when averaging over several hours. The calculation of budget terms for various combinations of dropsonde subsets indicates the presence of substantial spatial variability at ~50-km scales for precipitation, moisture flux convergence, and IWV tendency that is smoothed out when averaging over the full budget region. Across subregions, surface rain rate is linearly proportional to dynamical convergence of water vapor. These observational results improve our understanding of the thermodynamic and kinematic processes that control IWV in atmospheric rivers and the scales at which they occur.

Open access
Ian M. Brooks
,
Margaret J. Yelland
,
Robert C. Upstill-Goddard
,
Philip D. Nightingale
,
Steve Archer
,
Eric d'Asaro
,
Rachael Beale
,
Cory Beatty
,
Byron Blomquist
,
A. Anthony Bloom
,
Barbara J. Brooks
,
John Cluderay
,
David Coles
,
John Dacey
,
Michael DeGrandpre
,
Jo Dixon
,
William M. Drennan
,
Joseph Gabriele
,
Laura Goldson
,
Nick Hardman-Mountford
,
Martin K. Hill
,
Matt Horn
,
Ping-Chang Hsueh
,
Barry Huebert
,
Gerrit de Leeuw
,
Timothy G. Leighton
,
Malcolm Liddicoat
,
Justin J. N. Lingard
,
Craig McNeil
,
James B. McQuaid
,
Ben I. Moat
,
Gerald Moore
,
Craig Neill
,
Sarah J. Norris
,
Simon O'Doherty
,
Robin W. Pascal
,
John Prytherch
,
Mike Rebozo
,
Erik Sahlee
,
Matt Salter
,
Ute Schuster
,
Ingunn Skjelvan
,
Hans Slagter
,
Michael H. Smith
,
Paul D. Smith
,
Meric Srokosz
,
John A. Stephens
,
Peter K. Taylor
,
Maciej Telszewski
,
Roisin Walsh
,
Brian Ward
,
David K. Woolf
,
Dickon Young
, and
Henk Zemmelink

As part of the U.K. contribution to the international Surface Ocean-Lower Atmosphere Study, a series of three related projects—DOGEE, SEASAW, and HiWASE—undertook experimental studies of the processes controlling the physical exchange of gases and sea spray aerosol at the sea surface. The studies share a common goal: to reduce the high degree of uncertainty in current parameterization schemes. The wide variety of measurements made during the studies, which incorporated tracer and surfactant release experiments, included direct eddy correlation fluxes, detailed wave spectra, wind history, photographic retrievals of whitecap fraction, aerosolsize spectra and composition, surfactant concentration, and bubble populations in the ocean mixed layer. Measurements were made during three cruises in the northeast Atlantic on the RRS Discovery during 2006 and 2007; a fourth campaign has been making continuous measurements on the Norwegian weather ship Polarfront since September 2006. This paper provides an overview of the three projects and some of the highlights of the measurement campaigns.

Full access
Ian M. Brooks
,
Margaret J. Yelland
,
Robert C. Upstill-Goddard
,
Philip D. Nightingale
,
Steve Archer
,
Eric d'Asaro
,
Rachael Beale
,
Cory Beatty
,
Byron Blomquist
,
A. Anthony Bloom
,
Barbara J. Brooks
,
John Cluderay
,
David Coles
,
John Dacey
,
Michael Degrandpre
,
Jo Dixon
,
William M. Drennan
,
Joseph Gabriele
,
Laura Goldson
,
Nick Hardman-Mountford
,
Martin K. Hill
,
Matt Horn
,
Ping-Chang Hsueh
,
Barry Huebert
,
Gerrit De Leeuw
,
Timothy G. Leighton
,
Malcolm Liddicoat
,
Justin J. N. Lingard
,
Craig Mcneil
,
James B. Mcquaid
,
Ben I. Moat
,
Gerald Moore
,
Craig Neill
,
Sarah J. Norris
,
Simon O'Doherty
,
Robin W. Pascal
,
John Prytherch
,
Mike Rebozo
,
Erik Sahlee
,
Matt Salter
,
Ute Schuster
,
Ingunn Skjelvan
,
Hans Slagter
,
Michael H. Smith
,
Paul D. Smith
,
Meric Srokosz
,
John A. Stephens
,
Peter K. Taylor
,
Maciej Telszewski
,
Roisin Walsh
,
Brian Ward
,
David K. Woolf
,
Dickon Young
, and
Henk Zemmelink

Abstract

No Abstract available.

Full access