Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: C. Bruce Baker x
  • Journal of Hydrometeorology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Michael S. Buban
,
Temple R. Lee
, and
C. Bruce Baker

Abstract

Since drought and excessive rainfall can have significant socioeconomic impacts, it is important to have accurate high-resolution gridded datasets that can help improve analysis and forecasting of these conditions. One such widely used dataset is the Parameter-Elevation Regressions on Independent Slopes Model (PRISM). PRISM uses a digital elevation model (DEM) to obtain gridded elevation analyses and then uses a regression analysis along with approximately 15 000 surface precipitation measurements to produce a 4-km resolution daily precipitation product over the conterminous United States. The U.S. Climate Reference Network (USCRN) consists of 114 stations that take highly accurate meteorological measurements across all regions of the United States. A comparison between the USCRN and PRISM was performed using data from 2006 to 2018. There were good comparisons between the two datasets across nearly all seasons and regions; most mean daily differences were <1 mm, with most absolute daily differences ~5 mm. The most general characteristics were for a net dry bias in the PRISM data in the Southwest and a net moist bias in the southern United States. Verifying the PRISM dataset provides us with confidence it can be used with estimates of evapotranspiration, high-resolution gridded soil properties, and vegetation datasets to produce a daily gridded soil moisture product for operational use in the analyses and prediction of drought and excessive soil moisture conditions.

Free access
Jesse E. Bell
,
Michael A. Palecki
,
C. Bruce Baker
,
William G. Collins
,
Jay H. Lawrimore
,
Ronald D. Leeper
,
Mark E. Hall
,
John Kochendorfer
,
Tilden P. Meyers
,
Tim Wilson
, and
Howard J. Diamond

Abstract

The U.S. Climate Reference Network (USCRN) is a network of climate-monitoring stations maintained and operated by the National Oceanic and Atmospheric Administration (NOAA) to provide climate-science-quality measurements of air temperature and precipitation. The stations in the network were designed to be extensible to other missions, and the National Integrated Drought Information System program determined that the USCRN could be augmented to provide observations that are more drought relevant. To increase the network’s capability of monitoring soil processes and drought, soil observations were added to USCRN instrumentation. In 2011, the USCRN team completed at each USCRN station in the conterminous United States the installation of triplicate-configuration soil moisture and soil temperature probes at five standards depths (5, 10, 20, 50, and 100 cm) as prescribed by the World Meteorological Organization; in addition, the project included the installation of a relative humidity sensor at each of the stations. Work is also under way to eventually install soil sensors at the expanding USCRN stations in Alaska. USCRN data are stewarded by the NOAA National Climatic Data Center, and instrument engineering and performance studies, installation, and maintenance are performed by the NOAA Atmospheric Turbulence and Diffusion Division. This article provides a technical description of the USCRN soil observations in the context of U.S. soil-climate–measurement efforts and discusses the advantage of the triple-redundancy approach applied by the USCRN.

Full access