Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: Chris Hewitt x
- Bulletin of the American Meteorological Society x
- Refine by Access: Content accessible to me x
Abstract
Agricultural stakeholders can effectively manage the risks and opportunities arising from climate change and variability by enhancing climate services in agriculture. Key to understanding and addressing the climate challenge is the provision and the use of climate information to aid decision-makers and policy-makers. Climate services are now integral to the United Nations Framework Convention on Climate Change, the Intergovernmental Panel on Climate Change’s Assessment Reports, governments’ national adaptation plans, funding bodies, and a growing number of sectors and industries worldwide. The article provides our personal perspective, experience, and views on the important and timely issue of managing better the risks and opportunities to the agriculture sector and community that are arising from changes in climate. We describe a framework to help drive action to tackle the climate challenge comprising enhanced knowledge and information products, efficient information delivery and use, and assured policy and institutional support, in an iterative loop.
Abstract
Agricultural stakeholders can effectively manage the risks and opportunities arising from climate change and variability by enhancing climate services in agriculture. Key to understanding and addressing the climate challenge is the provision and the use of climate information to aid decision-makers and policy-makers. Climate services are now integral to the United Nations Framework Convention on Climate Change, the Intergovernmental Panel on Climate Change’s Assessment Reports, governments’ national adaptation plans, funding bodies, and a growing number of sectors and industries worldwide. The article provides our personal perspective, experience, and views on the important and timely issue of managing better the risks and opportunities to the agriculture sector and community that are arising from changes in climate. We describe a framework to help drive action to tackle the climate challenge comprising enhanced knowledge and information products, efficient information delivery and use, and assured policy and institutional support, in an iterative loop.
Abstract
We present results from the first 6 years of this major U.K. government funded project to accelerate and enhance collaborative research and development in climate science, forge a strong strategic partnership between U.K. and Chinese climate scientists, and demonstrate new climate services developed in partnership. The development of novel climate services is described in the context of new modeling and prediction capability, enhanced understanding of climate variability and change, and improved observational datasets. Selected highlights are presented from over 300 peer reviewed studies generated jointly by U.K. and Chinese scientists within this project. We illustrate new observational datasets for Asia and enhanced capability through training workshops on the attribution of climate extremes to anthropogenic forcing. Joint studies on the dynamics and predictability of climate have identified new opportunities for skillful predictions of important aspects of Chinese climate such as East Asian summer monsoon rainfall. In addition, the development of improved modeling capability has led to profound changes in model computer codes and climate model configurations, with demonstrable increases in performance. We also describe the successes and difficulties in bridging the gap between fundamental climate research and the development of novel real-time climate services. Participation of dozens of institutes through subprojects in this program, which is governed by the Met Office Hadley Centre, the China Meteorological Administration, and the Institute of Atmospheric Physics, is creating an important legacy for future collaboration in climate science and services.
Abstract
We present results from the first 6 years of this major U.K. government funded project to accelerate and enhance collaborative research and development in climate science, forge a strong strategic partnership between U.K. and Chinese climate scientists, and demonstrate new climate services developed in partnership. The development of novel climate services is described in the context of new modeling and prediction capability, enhanced understanding of climate variability and change, and improved observational datasets. Selected highlights are presented from over 300 peer reviewed studies generated jointly by U.K. and Chinese scientists within this project. We illustrate new observational datasets for Asia and enhanced capability through training workshops on the attribution of climate extremes to anthropogenic forcing. Joint studies on the dynamics and predictability of climate have identified new opportunities for skillful predictions of important aspects of Chinese climate such as East Asian summer monsoon rainfall. In addition, the development of improved modeling capability has led to profound changes in model computer codes and climate model configurations, with demonstrable increases in performance. We also describe the successes and difficulties in bridging the gap between fundamental climate research and the development of novel real-time climate services. Participation of dozens of institutes through subprojects in this program, which is governed by the Met Office Hadley Centre, the China Meteorological Administration, and the Institute of Atmospheric Physics, is creating an important legacy for future collaboration in climate science and services.