Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Christian Rocken x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
John Braun, Christian Rocken, and James Liljegren

Abstract

Line-of-sight measurements of integrated water vapor from a global positioning system (GPS) receiver and a microwave radiometer are compared. These two instruments were collocated at the central facility of the Department of Energy’s Atmospheric Radiation Measurement Program’s Southern Great Plains region, near Lamont, Oklahoma. The comparison was made using 47 days of observations in May and June of 2000. Weather conditions during this time period were variable with total integrated water vapor ranging from less than 10 to more than 50 mm. To minimize errors in the microwave radiometer observations, observations were compared during conditions when the liquid water measured by the radiometer was less than 0.1 mm. The linear correlation of the observations between the two instruments is 0.99 with a root-mean-square difference of the GPS water vapor to a linear fit of the microwave radiometer of 1.3 mm. The results from these comparisons are used to evaluate the ability of networks of GPS receivers to measure instantaneous line-of-sight integrals of water vapor. A discussion and analysis is provided regarding the additional information of the water vapor field contained in these observations compared to time- and space-averaged zenith and gradient measurements.

Full access
Christian Rocken, Sergey Sokolovskiy, James M. Johnson, and Doug Hunt

Abstract

The authors compare several methods to map the a priori tropospheric delay of global positioning system (GPS) signals from the zenith direction to lower elevations. This is commonly achieved with so-called mapping functions. Dry mapping functions are applied to the hydrostatic delay; wet mapping functions are used to map the zenith wet delay to lower elevation angles. The authors compared the following mapping techniques against raytraced delays computed for radiosonde profiles under the assumption of spherical symmetry: (a) the Niell mapping function; (b) mapping through the COSPAR International Reference Atmosphere with added water vapor climatology; (c) the same as b with added use of surface meteorological temperature, pressure, and humidity; and (d) use of the numerical reanalysis model of the National Centers for Environmental Prediction–National Center for Atmospheric Research. Based on comparisons with all available global radiosondes (∼1000 per day), for every fifth day of 1997 (73 days), the authors found that dry mapping based on method d performs 2–3 times better than a for elevations 15° and below. The authors further report that b and c perform better dry mapping than a, with an improvement of ∼50%. Smaller improvements are also shown for wet delay mapping by b, c, and d as compared to a. At 5° and below, the Niell dry mapping function has biases that vary with season by 1%, and it displays significant systematic errors (2%–4% at 5° elevation) between 30° and 90° southern latitude during the northern winter months. It is concluded that the most demanding meteorological and geodetic GPS applications should use location- and time-specific “direct” mapping functions such as b, c, or d rather than parameterized functions, especially if low elevation observations are used. The authors describe how this improved mapping can be implemented in GPS analysis software.

Full access
Steven R. Chiswell, Steven Businger, Michael Bevis, Fredrick Solheim, Christian Rocken, and Randolph Ware

Abstract

Water vapor radiometer (WVR) retrieval algorithms require a priori information on atmospheric conditions along the line of sight of the radiometer in order to derive opacities from observed brightness temperatures. This paper's focus is the mean radiating temperature of the atmosphere (T mr), which is utilized in these algorithms to relate WVR measurements to integrated water vapor. Current methods for specifying T mr rely on the climatology of the WVR site-for example, a seasonal average-or information from nearby soundings to specify T mr. However, values of T mr, calculated from radiosonde data, not only vary according to site and season but also exhibit large fluctuations in response to local weather conditions. By utilizing output from numerical weather prediction (NWP) models, T mr can be accurately prescribed for an arbitrary WVR site at a specific time. Temporal variations in local weather conditions can he resolved by NWP models on timescales shorter than standard radiosonde soundings.

Currently used methods for obtaining T mr are reviewed. Values of T mr obtained from current methods and this new approach are compared to those obtained from in situ radiosonde soundings. The improvement of the T mr calculation using available model forecast data rather than climatological values yields a corresponding improvement of comparable magnitude in the retrieval of atmospheric opacity. Use of forecast model data relieves a WVR site of its dependency on local climatology or the necessity of a nearby sounding, allowing more accurate retrieval of observed conditions and increased flexibility in choosing site location. Furthermore, it is found that the calculation of precipitable water by means of atmospheric opacities does not require time-dependent tuning parameters when model data are used. These results were obtained using an archived subset of the full nested grid model output. The added horizontal and vertical resolution of operational data should further improve this approach.

Full access
Michael Bevis, Steven Businger, Steven Chiswell, Thomas A. Herring, Richard A. Anthes, Christian Rocken, and Randolph H. Ware

Abstract

Emerging networks of Global Positioning System (GPS) receivers can be used in the remote sensing of atmospheric water vapor. The time-varying zenith wet delay observed at each GPS receiver in a network can be transformed into an estimate of the precipitable water overlying that receiver. This transformation is achieved by multiplying the zenith wet delay by a factor whose magnitude is a function of certain constants related to the refractivity of moist air and of the weighted mean temperature of the atmosphere. The mean temperature varies in space and time and must be estimated a priori in order to transform an observed zenith wet delay into an estimate of precipitable water. We show that the relative error introduced during this transformation closely approximates the relative error in the predicted mean temperature. Numerical weather models can be used to predict the mean temperature with an rms relative error of less than 1%.

Full access
Christian Rocken, Teresa Van Hove, James Johnson, Fred Solheim, Randolph Ware, Mike Bevis, Steve Chiswell, and Steve Businger

Abstract

Atmospheric water vapor was measured with six Global Positioning System (GPS) receivers for 1 month at sites in Colorado, Kansas, and Oklahoma. During the time of the experiment from 7 May to 2 June 1993, the area experienced severe weather. The experiment, called “GPS/STORM,” used GPS signals to sense water vapor and tested the accuracy of the method for meteorological applications. Zenith wet delay and precipitable water (PW) were estimated, relative to Platteville, Colorado, every 30 min at five sites. At three of these five sites the authors compared GPS estimates of PW to water vapor radiometer (WVR) measurements. GPS and WVR estimates agree to 1–2 mm rms. For GPS/STORM site spacing of 500–900 km, high-accuracy GPS satellite orbits are required to estimate 1–2-mm-level PW. Broadcast orbits do not have sufficient accuracy. It is possible, however, to estimate orbit improvements simultaneously with PW. Therefore, it is feasible that future meteorological GPS networks provide near-real-time high-resolution PW for weather forecasting.

Full access
Steven Businger, Steven R. Chiswell, Michael Bevis, Jingping Duan, Richard A. Anthes, Christian Rocken, Randolph H. Ware, Michael Exner, T. VanHove, and Fredrick S. Solheim

This paper provides an overview of applications of the Global Positioning System (GPS) for active measurement of the Earth's atmosphere. Microwave radio signals transmitted by GPS satellites are delayed (refracted) by the atmosphere as they propagate to Earth-based GPS receivers or GPS receivers carried on low Earth orbit satellites.

The delay in GPS signals reaching Earth-based receivers due to the presence of water vapor is nearly proportional to the quantity of water vapor integrated along the signal path. Measurement of atmospheric water vapor by Earth-based GPS receivers was demonstrated during the GPS/STORM field project to be comparable and in some respects superior to measurements by ground-based water vapor radiometers. Increased spatial and temporal resolution of the water vapor distribution provided by the GPS/STORM network proved useful in monitoring the moisture-flux convergence along a dryline and the decrease in integrated water vapor associated with the passage of a midtropospheric cold front, both of which triggered severe weather over the area during the course of the experiment.

Given the rapid growth in regional networks of continuously operating Earth-based GPS receivers currently being implemented, an opportunity exists to observe the distribution of water vapor with increased spatial and temporal coverage, which could prove valuable in a range of operational and research applications in the atmospheric sciences.

The first space-based GPS receiver designed for sensing the Earth's atmosphere was launched in April 1995. Phase measurements of GPS signals as they are occluded by the atmosphere provide refractivity profiles (see the companion article by Ware et al. on page 19 of this issue). Water vapor limits the accuracy of temperature recovery below the tropopause because of uncertainty in the water vapor distribution. The sensitivity of atmospheric refractivity to water vapor pressure, however, means that refractivity profiles can in principle yield information on the atmospheric humidity distribution given independent information on the temperature and pressure distribution from NWP models or independent observational data.

A discussion is provided of some of the research opportunities that exist to capitalize on the complementary nature of the methods of active atmospheric monitoring by GPS and other observation systems for use in weather and climate studies and in numerical weather prediction models.

Full access
Jingping Duan, Michael Bevis, Peng Fang, Yehuda Bock, Steven Chiswell, Steven Businger, Christian Rocken, Frederick Solheim, Terasa van Hove, Randolph Ware, Simon McClusky, Thomas A. Herring, and Robert W. King

Abstract

A simple approach to estimating vertically integrated atmospheric water vapor, or precipitable water, from Global Positioning System (GPS) radio signals collected by a regional network of ground-based geodetic GPS receiver is illustrated and validated. Standard space geodetic methods are used to estimate the zenith delay caused by the neutral atmosphere, and surface pressure measurements are used to compute the hydrostatic (or “dry”) component of this delay. The zenith hydrostatic delay is subtracted from the zenith neutral delay to determine the zenith wet delay, which is then transformed into an estimate of precipitable water. By incorporating a few remote global tracking stations (and thus long baselines) into the geodetic analysis of a regional GPS network, it is possible to resolve the absolute (not merely the relative) value of the zenith neutral delay at each station in the augmented network. This approach eliminates any need for external comparisons with water vapor radiometer observations and delivers a pure GPS solution for precipitable water. Since the neutral delay is decomposed into its hydrostatic and wet components after the geodetic inversion, the geodetic analysis is not complicated by the fact that some GPS stations are equipped with barometers and some are not. This approach is taken to reduce observations collected in the field experiment GPS/STORM and recover precipitable water with an rms error of 1.0–1.5 mm.

Full access