Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Christopher J. Melick x
  • Weather and Forecasting x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Rebecca D. Adams-Selin
,
Adam J. Clark
,
Christopher J. Melick
,
Scott R. Dembek
,
Israel L. Jirak
, and
Conrad L. Ziegler

Abstract

Four different versions of the HAILCAST hail model have been tested as part of the 2014–16 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiments. HAILCAST was run as part of the National Severe Storms Laboratory (NSSL) WRF Ensemble during 2014–16 and the Community Leveraged Unified Ensemble (CLUE) in 2016. Objective verification using the Multi-Radar Multi-Sensor maximum expected size of hail (MRMS MESH) product was conducted using both object-based and neighborhood grid-based verification. Subjective verification and feedback was provided by HWT participants. Hourly maximum storm surrogate fields at a variety of thresholds and Storm Prediction Center (SPC) convective outlooks were also evaluated for comparison. HAILCAST was found to improve with each version due to feedback from the 2014–16 HWTs. The 2016 version of HAILCAST was equivalent to or exceeded the skill of the tested storm surrogates across a variety of thresholds. The post-2016 version of HAILCAST was found to improve 50-mm hail forecasts through object-based verification, but 25-mm hail forecasting ability declined as measured through neighborhood grid-based verification. The skill of the storm surrogate fields varied widely as the threshold values used to determine hail size were varied. HAILCAST was found not to require such tuning, as it produced consistent results even when used across different model configurations and horizontal grid spacings. Additionally, different storm surrogate fields performed at varying levels of skill when forecasting 25- versus 50-mm hail, hinting at the different convective modes typically associated with small versus large sizes of hail. HAILCAST was able to match results relatively consistently with the best-performing storm surrogate field across multiple hail size thresholds.

Full access
Burkely T. Gallo
,
Adam J. Clark
,
Israel Jirak
,
John S. Kain
,
Steven J. Weiss
,
Michael Coniglio
,
Kent Knopfmeier
,
James Correia Jr.
,
Christopher J. Melick
,
Christopher D. Karstens
,
Eswar Iyer
,
Andrew R. Dean
,
Ming Xue
,
Fanyou Kong
,
Youngsun Jung
,
Feifei Shen
,
Kevin W. Thomas
,
Keith Brewster
,
Derek Stratman
,
Gregory W. Carbin
,
William Line
,
Rebecca Adams-Selin
, and
Steve Willington

Abstract

Led by NOAA’s Storm Prediction Center and National Severe Storms Laboratory, annual spring forecasting experiments (SFEs) in the Hazardous Weather Testbed test and evaluate cutting-edge technologies and concepts for improving severe weather prediction through intensive real-time forecasting and evaluation activities. Experimental forecast guidance is provided through collaborations with several U.S. government and academic institutions, as well as the Met Office. The purpose of this article is to summarize activities, insights, and preliminary findings from recent SFEs, emphasizing SFE 2015. Several innovative aspects of recent experiments are discussed, including the 1) use of convection-allowing model (CAM) ensembles with advanced ensemble data assimilation, 2) generation of severe weather outlooks valid at time periods shorter than those issued operationally (e.g., 1–4 h), 3) use of CAMs to issue outlooks beyond the day 1 period, 4) increased interaction through software allowing participants to create individual severe weather outlooks, and 5) tests of newly developed storm-attribute-based diagnostics for predicting tornadoes and hail size. Additionally, plans for future experiments will be discussed, including the creation of a Community Leveraged Unified Ensemble (CLUE) system, which will test various strategies for CAM ensemble design using carefully designed sets of ensemble members contributed by different agencies to drive evidence-based decision-making for near-future operational systems.

Full access