Search Results

You are looking at 1 - 10 of 24 items for :

  • Author or Editor: Christopher W. Fairall x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Benjamin W. Barr
,
Shuyi S. Chen
, and
Christopher W. Fairall

Abstract

Air–sea exchange in high winds is one of the most important but poorly represented processes in tropical cyclone (TC) prediction models. Effects of sea spray on air–sea heat fluxes in TCs are particularly difficult to model due to complex sea states and lack of observations in extreme wind and wave conditions. This study introduces a new sea-state-dependent air–sea heat flux parameterization with spray, which is developed using the Unified Wave Interface–Coupled Model (UWIN-CM). Impacts of spray on air–sea heat fluxes are investigated across a wide range of winds, waves, and atmospheric and ocean conditions in five TCs of various sizes and intensities. Spray generation with variable size distribution is explicitly represented by surface wave properties such as wave dissipation, significant wave height, and dominant phase speed, which may be uncorrelated with local winds. The sea-state-dependent spray mass flux is substantially different than a wind-dependent flux, especially when wave shoaling occurs with enhanced wave dissipation near the coast during TC landfall. Spray increases the air–sea enthalpy flux near the radius of maximum wind (RMW) by approximately 5%–20% when mean 10-m wind speed at the RMW reaches 40–50 m s−1. These values can be amplified significantly by coastal wave shoaling. Spray latent heat fluxes may be dampened in the eyewall due to high saturation ratio, and they consistently produce a moistening and cooling effect outside the eyewall. Spray strongly modifies the total sensible heat flux and can cause either a warming or cooling effect at the RMW depending on eyewall saturation ratio.

Significance Statement

Fluxes of heat and moisture from the ocean to the atmosphere are important for hurricane intensification, but the impact of sea spray generated by breaking waves on these fluxes is not well understood. We develop a new model for heat fluxes with spray that accounts for how waves control spray, and we apply this model to a set of five simulated hurricanes to better understand the broad range of ways that spray impacts heat fluxes in high wind conditions. We find that spray significantly affects heat fluxes in hurricanes and that impacts are strongly controlled by waves, which are not always correlated to winds. This research improves our understanding of how spray affects heat fluxes in hurricanes and provides a foundation for future studies investigating sea spray and its impacts on high-impact weather systems.

Free access
Efthymios Serpetzoglou
,
Bruce A. Albrecht
,
Pavlos Kollias
, and
Christopher W. Fairall

Abstract

The southeast Pacific stratocumulus regime is an important component of the earth’s climate system because of its substantial impact on albedo. Observational studies of this cloud regime have been limited, but during the past 5 yr, a series of cruises with research vessels equipped with in situ and remote sensing systems have provided unprecedented observations of boundary layer cloud and drizzle structures. These cruises started with the East Pacific Investigation of Climate (EPIC) 2001 field experiment, followed by cruises in a similar area in 2003 and 2004 [Pan-American Climate Studies (PACS) Stratus cruises]. The sampling from these three cruises provides a sufficient dataset to study the variability occurring over this region. This study compares observations from the 2004 cruise with those obtained during the previous two cruises. Observations from the ship provide information about boundary layer structure, fractional cloudiness, cloud depth, and drizzle characteristics. This study indicates more strongly decoupled boundary layers during the 2004 cruise than the well-mixed conditions that dominated the cloud and boundary layer structures during the EPIC cruise, and the highly variable conditions—sharp transitions from a solid stratus deck to broken-cloud and clear-sky periods—encountered during PACS Stratus 2003. Diurnal forcing and synoptic conditions are considered to be factors affecting these variations. A statistical evaluation of the macrophysical boundary layer, cloud, and drizzle properties is performed using the 5–6-day periods for which the research vessels remained stationed at the location of 20°S, 85°W during each cruise.

Full access
Edgar L. Andreas
,
Christopher W. Fairall
,
P. Ola G. Persson
, and
Peter S. Guest

Abstract

Defining the averaging time required for measuring meaningful turbulence statistics is a central problem in boundary layer meteorology. Path-averaging scintillation instruments are presumed to confer some time-averaging benefits when the objective is to measure surface fluxes, but that hypothesis has not been tested definitively. This study uses scintillometer measurements of the inner scale (l 0) and the refractive index structure parameter ( C 2 n ) to investigate this question of required averaging time. The first conclusion is that the beta probability distribution is useful for representing C 2 n and l 0 measurements. Consequently, beta distributions are used to set confidence limits on C 2 n and l 0 values obtained over various averaging periods. When the C 2 n and l 0 time series are stationary, a short-term average of C 2 n or l 0 can be as accurate as a long-term average. However, as with point measurements, when time series of path averaged C 2 n or l 0 values are nonstationary, turbulent surface fluxes inferred from these C 2 n and l 0 values can be variable and uncertain—problems that path averaging was presumed to mitigate. Because nonstationarity is a limiting condition, the last topic is quantifying the nonstationarity with a published nonstationarity ratio and also by simply counting zero crossings in the time series.

Full access
C. W. Fairall
,
Sergey Y. Matrosov
,
Christopher R. Williams
, and
E. J. Walsh

ABSTRACT

The NOAA W-band radar was deployed on a P-3 aircraft during a study of storm fronts off the U.S. West Coast in 2015 in the second CalWater (CalWater-2) field program. This paper presents an analysis of measured equivalent radar reflectivity factor Z em profiles to estimate the path-averaged precipitation rate and profiles of precipitation microphysics. Several approaches are explored using information derived from attenuation of Z em as a result of absorption and scattering by raindrops. The first approach uses the observed decrease of Z em with range below the aircraft to estimate column mean precipitation rates. A hybrid approach that combines Z em in light rain and attenuation in stronger rain performed best. The second approach estimates path-integrated attenuation (PIA) via the difference in measured and calculated normalized radar cross sections (NRCS m and NRCS c , respectively) retrieved from the ocean surface. The retrieved rain rates are compared to estimates from two other systems on the P-3: a Stepped Frequency Microwave Radiometer (SFMR) and a Wide-Swath Radar Altimeter (WSRA). The W-band radar gives reasonable values for rain rates in the range 0–10 mm h−1 with an uncertainty on the order of 1 mm h−1. Mean profiles of Z em, raindrop Doppler velocity, attenuation, and precipitation rate in bins of rain rate are also computed. A method for correcting measured profiles of Z em for attenuation to estimate profiles of nonattenuated profiles of Z e is examined. Good results are obtained by referencing the surface boundary condition to the NRCS values of PIA. Limitations of the methods are discussed.

Open access
Ge Peng
,
Lei Shi
,
Steve T. Stegall
,
Jessica L. Matthews
, and
Christopher W. Fairall

Abstract

The accuracy of cloud-screened 2-m air temperatures derived from the intersatellite-calibrated brightness temperatures based on the High Resolution Infrared Radiation Sounder (HIRS) measurements on board the National Oceanic and Atmospheric Administration (NOAA) Polar-Orbiting Operational Environmental Satellite (POES) series is evaluated by comparing HIRS air temperatures to 1-yr quality-controlled measurements collected during the Surface Heat Budget of the Arctic Ocean (SHEBA) project (October 1997–September 1998). The mean error between collocated HIRS and SHEBA 2-m air temperature is found to be on the order of 1°C, with a slight sensitivity to spatial and temporal radii for collocation. The HIRS temperatures capture well the temporal variability of SHEBA temperatures, with cross-correlation coefficients higher than 0.93, all significant at the 99.9% confidence level. More than 87% of SHEBA temperature variance can be explained by linear regression of collocated HIRS temperatures. The analysis found a strong dependency of mean temperature errors on cloud conditions observed during SHEBA, indicating that availability of an accurate cloud mask in the region is essential to further improve the quality of HIRS near-surface air temperature products. This evaluation establishes a baseline of accuracy of HIRS temperature retrievals, providing users with information on uncertainty sources and estimates. It is a first step toward development of a new long-term 2-m air temperature product in the Arctic that utilizes intersatellite-calibrated remote sensing data from the HIRS instrument.

Full access
Meghan F. Cronin
,
Nicholas A. Bond
,
Christopher W. Fairall
, and
Robert A. Weller

Abstract

Data from the Eastern Pacific Investigation of Climate Studies (EPIC) mooring array are used to evaluate the annual cycle of surface cloud forcing in the far eastern Pacific stratus cloud deck/cold tongue/intertropical convergence zone complex. Data include downwelling surface solar and longwave radiation from 10 EPIC-enhanced Tropical Atmosphere Ocean (TAO) moorings from 8°S, 95°W to 12°N, 95°W, and the Woods Hole Improved Meteorology (IMET) mooring in the stratus cloud deck region at 20°S, 85°W. Surface cloud forcing is defined as the observed downwelling radiation at the surface minus the clear-sky value. Solar cloud forcing and longwave cloud forcing are anticorrelated at all latitudes from 12°N to 20°S: clouds tended to reduce the downward solar radiation and to a lesser extent increase the downward longwave radiation at the surface. The relative amount of solar radiation reduction and longwave increase depends upon cloud type and varies with latitude. A statistical relationship between solar and longwave surface cloud forcing is developed for rainy and dry periods and for the full record length in six latitudinal regions: northeast tropical warm pool, ITCZ, frontal zone, cold tongue, southern, and stratus deck regions. The buoy cloud forcing observations and empirical relations are compared with the International Satellite Cloud Climatology Project (ISCCP) radiative flux data (FD) dataset and are used as benchmarks to evaluate surface cloud forcing in the NCEP Reanalysis 2 (NCEP2) and 40-yr ECMWF Re-Analysis (ERA-40). ERA-40 and NCEP2 cloud forcing (both solar and longwave) showed large discrepancies with observations, being too large in the ITCZ and equatorial regions and too weak under the stratus deck at 20°S and north to the equator during the cool season from July to December. In particular the NCEP2 cloud forcing at the equator was nearly identical to the ITCZ region and thus had significantly larger solar cloud forcing and smaller longwave cloud forcing than observed. The net result of the solar and longwave cloud forcing deviations is that there is too little radiative warming in the ITCZ and southward to 8°S during the warm season and too much radiative warming under the stratus deck at 20°S and northward to the equator during the cold season.

Full access
Simon P. de Szoeke
,
Christopher W. Fairall
,
Daniel E. Wolfe
,
Ludovic Bariteau
, and
Paquita Zuidema

Abstract

A new dataset synthesizes in situ and remote sensing observations from research ships deployed to the southeastern tropical Pacific stratocumulus region for 7 years in boreal fall. Surface meteorology, turbulent and radiative fluxes, aerosols, cloud properties, and rawinsonde profiles were measured on nine ship transects along 20°S from 75° to 85°W. Fluxes at the ocean surface are essential to the equilibrium SST. Solar radiation is the only warming net heat flux, with 180–200 W m−2 in boreal fall. The strongest cooling is evaporation (60–100 W m−2), followed by net thermal infrared radiation (30 W m−2) and sensible heat flux (<10 W m−2). The 70 W m−2 imbalance of heating at the surface reflects the seasonal SST tendency and some 30 W m−2 cooling that is mostly due to ocean transport.

Coupled models simulate significant SST errors in the eastern tropical Pacific Ocean. Three different observation-based gridded ocean surface flux products agree with ship and buoy observations, while fluxes simulated by 15 Coupled Model Intercomparison Project phase 3 [CMIP3; used for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report] general circulation models have relatively large errors. This suggests the gridded observation-based flux datasets are sufficiently accurate for verifying coupled models. Longwave cooling and solar warming are correlated among model simulations, consistent with cloud radiative forcing and low cloud amount differences. In those simulations with excessive solar heating, elevated SST also results in larger evaporation and longwave cooling to compensate for the solar excess. Excessive turbulent heat fluxes (10–90 W m−2 cooling, mostly evaporation) are the largest errors in simulations once the compensation between solar and longwave radiation is taken into account. In addition to excessive solar warming and evaporation, models simulate too little oceanic residual cooling in the southeastern tropical Pacific Ocean.

Full access
Simon P. de Szoeke
,
James B. Edson
,
June R. Marion
,
Christopher W. Fairall
, and
Ludovic Bariteau

Abstract

Dynamics of the Madden–Julian Oscillation (DYNAMO) and Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE) observations and reanalysis-based surface flux products are used to test theories of atmosphere–ocean interaction that explain the Madden–Julian oscillation (MJO). Negative intraseasonal outgoing longwave radiation, indicating deep convective clouds, is in phase with increased surface wind stress, decreased solar heating, and increased surface turbulent heat flux—mostly evaporation—from the ocean to the atmosphere. Net heat flux cools the upper ocean in the convective phase. Sea surface temperature (SST) warms during the suppressed phase, reaching a maximum before the onset of MJO convection. The timing of convection, surface flux, and SST is consistent from the central Indian Ocean (70°E) to the western Pacific Ocean (160°E).

Mean surface evaporation observed in TOGA COARE and DYNAMO (110 W m−2) accounts for about half of the moisture supply for the mean precipitation (210 W m−2 for DYNAMO). Precipitation maxima are an order of magnitude larger than evaporation anomalies, requiring moisture convergence in the mean, and on intraseasonal and daily time scales. Column-integrated moisture increases 2 cm before the convectively active phase over the Research Vessel (R/V) Roger Revelle in DYNAMO, in accordance with MJO moisture recharge theory. Local surface evaporation does not significantly recharge the column water budget before convection. As suggested in moisture mode theories, evaporation increases the moist static energy of the column during convection. Rather than simply discharging moisture from the column, the strongest daily precipitation anomalies in the convectively active phase accompany the increasing column moisture.

Full access
Virendra P. Ghate
,
Bruce A. Albrecht
,
Mark A. Miller
,
Alan Brewer
, and
Christopher W. Fairall

Abstract

Observations made during a 24-h period as part of the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx) are analyzed to study the radiation and turbulence associated with the stratocumulus-topped marine boundary layer (BL). The first 14 h exhibited a well-mixed (coupled) BL with an average cloud-top radiative flux divergence of ~130 W m−2; the BL was decoupled during the last 10 h with negligible radiative flux divergence. The averaged radiative cooling very close to the cloud top was −9.04 K h−1 in coupled conditions and −3.85 K h−1 in decoupled conditions. This is the first study that combined data from a vertically pointing Doppler cloud radar and a Doppler lidar to yield the vertical velocity structure of the entire BL. The averaged vertical velocity variance and updraft mass flux during coupled conditions were higher than those during decoupled conditions at all levels by a factor of 2 or more. The vertical velocity skewness was negative in the entire BL during coupled conditions, whereas it was weakly positive in the lower third of the BL and negative above during decoupled conditions. A formulation of velocity scale is proposed that includes the effect of cloud-top radiative cooling in addition to the surface buoyancy flux. When scaled by the velocity scale, the vertical velocity variance and coherent downdrafts had similar magnitude during the coupled and decoupled conditions. The coherent updrafts that exhibited a constant profile in the entire BL during both the coupled and decoupled conditions scaled well with the convective velocity scale to a value of ~0.5.

Full access
Virendra P. Ghate
,
Mark A. Miller
,
Bruce A. Albrecht
, and
Christopher W. Fairall

Abstract

Stratocumulus-topped boundary layers (STBLs) observed in three different regions are described in the context of their thermodynamic and radiative properties. The primary dataset consists of 131 soundings from the southeastern Pacific (SEP), 90 soundings from the island of Graciosa (GRW) in the North Atlantic, and 83 soundings from the U.S. Southern Great Plains (SGP). A new technique that makes an attempt to preserve the depths of the sublayers within an STBL is proposed for averaging the profiles of thermodynamic and radiative variables. A one-dimensional radiative transfer model known as the Rapid Radiative Transfer Model was used to compute the radiative fluxes within the STBL. The SEP STBLs were characterized by a stronger and deeper inversion, together with thicker clouds, lower free-tropospheric moisture, and higher radiative flux divergence across the cloud layer, as compared to the GRW STBLs. Compared to the STBLs over the marine locations, the STBLs over SGP had higher wind shear and a negligible (−0.41 g kg−1) jump in mixing ratio across the inversion. Despite the differences in many of the STBL thermodynamic parameters, the differences in liquid water path at the three locations were statistically insignificant. The soundings were further classified as well mixed or decoupled based on the difference between the surface and cloud-base virtual potential temperature. The decoupled STBLs were deeper than the well-mixed STBLs at all three locations. Statistically insignificant differences in surface latent heat flux (LHF) between well-mixed and decoupled STBLs suggest that parameters other than LHF are responsible for producing decoupling.

Full access