Search Results

You are looking at 1 - 8 of 8 items for :

  • Author or Editor: Craig Lee x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Craig S. Long, Alvin J. Miller, Hai-Tien Lee, Jeannette D. Wild, Richard C. Przywarty, and Drusilla Hufford

The National Weather Service (NWS), in collaboration with the Environmental Protection Agency (EPA), now issues an Ultraviolet (UV) index forecast. The UV index (UVI) is a mechanism by which the American public is forewarned of the next day's noontime intensity of UV radiation at locations within the United States. The EPA's role in this effort is to alert the public of the dangerous health effects of overexposure to, and the accumulative effects of, UV radiation. The EPA also provides ground-level monitoring data for use in ongoing verification of the UVI. The NWS estimates the UVI using existing atmospheric measurements, forecasts, and an advanced radiative transfer model. This paper discusses the justification for a forecasted index, the nature of UV radiation, the methodology of producing the UVI, and results from verifying the UVI. Since the UVI is an evolving product, a short discussion of necessary improvements and/or refinements is included at the end of this article.

Full access
Peter H. Hildebrand, Wen-Chau Lee, Craig A. Walther, Charles Frush, Mitchell Randall, Eric Loew, Richard Neitzel, Richard Parsons, Jacques Testud, François Baudin, and Alain LeCornec

The ELDORA/ASTRAIA (Electra Doppler Radar/Analyese Stereoscopic par Impulsions Aeroporte) airborne Doppler weather radar was recently placed in service by the National Center for Atmospheric Research and the Centre d'étude des Environnements Terrestre et Planetaires in France. After a multiyear development effort, the radar saw its first field tests in the TOGA COARE (Tropical Oceans–Global Atmosphere Coupled Ocean–Atmosphere Response Experiment) field program during January and February 1993. The ELDORA/ASTRAIA radar (herein referred to as ELDORA) is designed to provide high-resolution measurements of the air motion and rainfall characteristics of very large storms, storms that are frequently too large or too remote to be adequately observed by ground-based radars. This paper discusses the measurement requirements and the design goals of the radar and concludes with an evaluation of the performance of the system using data from TOGA COARE.

The performance evaluation includes data from two cases. First, observations of a mesoscale convective system on 9 February 1993 are used to compare the data quality of the ELDORA radar with the National Oceanic and Atmospheric Administration P-3 airborne Doppler radars. The large-scale storm structure and airflow from ELDORA are seen to compare quite well with analyses using data from the P-3 radars. The major differences observed between the ELDORA and P-3 radar analyses were due to the higher resolution of the ELDORA data and due to the different domains observed by the individual radars, a result of the selection of flight track past the storm for each aircraft. In a second example, the high-resolution capabilities of ELDORA are evaluated using observations of a shear-parallel mesoscale convective system (MCS) that occurred on 18 February 1993. This MCS line was characterized by shear-parallel clusters of small convective cells, clusters that were moving quickly with the low-level winds. High-resolution analysis of these data provided a clear picture of the small scale of the storm vertical velocity structure associated with individual convective cells. The peak vertical velocities measured in the high-resolution analysis were also increased above low-resolution analysis values, in many areas by 50%–100%. This case exemplifies the need for high-resolution measurement and analysis of convective transport, even if the goal is to measure and parameterize the large-scale effects of storms. The paper concludes with a discussion of completion of the remaining ELDORA design goals and planned near-term upgrades to the system. These upgrades include an implementation of dual–pulse repetition frequency and development of real-time, in-flight dual-Doppler analysis capability.

Full access

NPOESS

Next-Generation Operational Global Earth Observations

Thomas F. Lee, Craig S. Nelson, Patrick Dills, Lars Peter Riishojgaard, Andy Jones, Li Li, Steven Miller, Lawrence E. Flynn, Gary Jedlovec, William McCarty, Carl Hoffman, and Gary McWilliams

The United States is merging its two polar-orbiting operational environmental satellite programs operated by the Department of Commerce and the Department of Defense into a single system, which is called the National Polar-orbiting Operational Environmental Satellite System (NPOESS). During the next decade, NPOESS will provide global operational data to meet many of the needs of weather forecasters, climate researchers, and global decision makers for remotely sensed Earth science data and global environmental monitoring. The NPOESS Preparatory Project (NPP) will be launched in 2011 as a precursor to NPOESS to reduce final development risks for NPOESS and to provide continuity of global imaging and atmospheric sounding data from the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) missions. Beginning in 2014, NPOESS spacecraft will be launched into an afternoon orbit and in 2016 into an early-morning orbit to provide significantly improved operational capabilities and benefits to satisfy critical civil and national security requirements for space-based, remotely sensed environmental data. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteorological Operation (MetOp) spacecraft will complement NPOESS in a midmorning orbit. The joint constellation will provide global coverage with a data refresh rate of approximately four hours. NPOESS will observe more phenomena simultaneously from space and deliver a data volume significantly greater than its operational predecessors with substantially improved data delivery to users. Higher-resolution (spatial and spectral) and more accurate imaging and atmospheric sounding data will enable improvements in short- to medium-range weather forecasts. Multispectral and hyperspectral instruments on NPOESS will provide global imagery and sounding products useful to the forecaster that are complementary to those available from geostationary satellites. NPOESS will support the operational needs of meteorological, oceanographic, environmental, climatic, and space environmental remote sensing programs and provide continuity of data for climate researchers. This article that describes NPOESS was completed and accepted for publication prior to the White House decision in February 2010 ordering a major restructuring of the NPOESS program. The Department of Commerce will now assume primary responsibility for the afternoon polar-orbiting operational environmental satellite orbit and the Department of Defense will take primary responsibility for the early morning orbit. However, NPP, as described in this article, is still scheduled to be launched in 2011. Several of the instruments and program elements described in this article are also likely to be carried forward into future U.S. polar-orbiting operational environmental satellite missions.

Full access
Craig B. Clements, Shiyuan Zhong, Scott Goodrick, Ju Li, Brian E. Potter, Xindi Bian, Warren E. Heilman, Joseph J. Charney, Ryan Perna, Meongdo Jang, Daegyun Lee, Monica Patel, Susan Street, and Glenn Aumann

Grass fires, although not as intense as forest fires, present a major threat to life and property during periods of drought in the Great Plains of the United States. Recently, major wildland grass fires in Texas burned nearly 1.6 million acres and destroyed over 730 homes and 1320 other buildings. The fires resulted in the death of 19 people, an estimated loss of 10,000 head of livestock, and more than $628 million in damage, making the 2005/06 fire season the worst on record for the state of Texas.

As an aid to fire management, various models have been developed to describe fire behavior. However, these models strongly emphasize fuels and fail to adequately consider the role of convective dynamics within the atmosphere and its interaction with the fire due to the lack of observational data. To fill this gap, an intensive field measurement campaign called FireFlux was conducted during February 2006 near Houston, Texas. The campaign employed a variety of instrument platforms to collect turbulence data at multiple levels within and immediately downwind of a 155 acre tall-grass prairie burn unit. This paper presents some first-time observations of atmospheric turbulent structures/fluxes associated with intense grass fires and provides a basis to further our understanding of the dynamics of grass fires and their interactions with the atmosphere.

Full access
Faisal Hossain, Margaret Srinivasan, Craig Peterson, Alice Andral, Ed Beighley, Eric Anderson, Rashied Amini, Charon Birkett, David Bjerklie, Cheryl Ann Blain, Selma Cherchali, Cédric H. David, Bradley Doorn, Jorge Escurra, Lee-Lueng Fu, Chris Frans, John Fulton, Subhrendu Gangopadhay, Subimal Ghosh, Colin Gleason, Marielle Gosset, Jessica Hausman, Gregg Jacobs, John Jones, Yasir Kaheil, Benoit Laignel, Patrick Le Moigne, Li Li, Fabien Lefèvre, Robert Mason, Amita Mehta, Abhijit Mukherjee, Anthony Nguy-Robertson, Sophie Ricci, Adrien Paris, Tamlin Pavelsky, Nicolas Picot, Guy Schumann, Sudhir Shrestha, Pierre-Yves Le Traon, and Eric Trehubenko
Open access
Andrey Y. Shcherbina, Miles A. Sundermeyer, Eric Kunze, Eric D’Asaro, Gualtiero Badin, Daniel Birch, Anne-Marie E. G. Brunner-Suzuki, Jörn Callies, Brandy T. Kuebel Cervantes, Mariona Claret, Brian Concannon, Jeffrey Early, Raffaele Ferrari, Louis Goodman, Ramsey R. Harcourt, Jody M. Klymak, Craig M. Lee, M.-Pascale Lelong, Murray D. Levine, Ren-Chieh Lien, Amala Mahadevan, James C. McWilliams, M. Jeroen Molemaker, Sonaljit Mukherjee, Jonathan D. Nash, Tamay Özgökmen, Stephen D. Pierce, Sanjiv Ramachandran, Roger M. Samelson, Thomas B. Sanford, R. Kipp Shearman, Eric D. Skyllingstad, K. Shafer Smith, Amit Tandon, John R. Taylor, Eugene A. Terray, Leif N. Thomas, and James R. Ledwell

Abstract

Lateral stirring is a basic oceanographic phenomenon affecting the distribution of physical, chemical, and biological fields. Eddy stirring at scales on the order of 100 km (the mesoscale) is fairly well understood and explicitly represented in modern eddy-resolving numerical models of global ocean circulation. The same cannot be said for smaller-scale stirring processes. Here, the authors describe a major oceanographic field experiment aimed at observing and understanding the processes responsible for stirring at scales of 0.1–10 km. Stirring processes of varying intensity were studied in the Sargasso Sea eddy field approximately 250 km southeast of Cape Hatteras. Lateral variability of water-mass properties, the distribution of microscale turbulence, and the evolution of several patches of inert dye were studied with an array of shipboard, autonomous, and airborne instruments. Observations were made at two sites, characterized by weak and moderate background mesoscale straining, to contrast different regimes of lateral stirring. Analyses to date suggest that, in both cases, the lateral dispersion of natural and deliberately released tracers was O(1) m2 s–1 as found elsewhere, which is faster than might be expected from traditional shear dispersion by persistent mesoscale flow and linear internal waves. These findings point to the possible importance of kilometer-scale stirring by submesoscale eddies and nonlinear internal-wave processes or the need to modify the traditional shear-dispersion paradigm to include higher-order effects. A unique aspect of the Scalable Lateral Mixing and Coherent Turbulence (LatMix) field experiment is the combination of direct measurements of dye dispersion with the concurrent multiscale hydrographic and turbulence observations, enabling evaluation of the underlying mechanisms responsible for the observed dispersion at a new level.

Full access
Emily Shroyer, Amit Tandon, Debasis Sengupta, Harindra J.S. Fernando, Andrew J. Lucas, J. Thomas Farrar, Rajib Chattopadhyay, Simon de Szoeke, Maria Flatau, Adam Rydbeck, Hemantha Wijesekera, Michael McPhaden, Hyodae Seo, Aneesh Subramanian, R Venkatesan, Jossia Joseph, S. Ramsundaram, Arnold L. Gordon, Shannon M. Bohman, Jaynise Pérez, Iury T. Simoes-Sousa, Steven R. Jayne, Robert E. Todd, G.S. Bhat, Matthias Lankhorst, Tamara Schlosser, Katherine Adams, S.U.P Jinadasa, Manikandan Mathur, M. Mohapatra, E. Pattabhi Rama Rao, A. K. Sahai, Rashmi Sharma, Craig Lee, Luc Rainville, Deepak Cherian, Kerstin Cullen, Luca R. Centurioni, Verena Hormann, Jennifer MacKinnon, Uwe Send, Arachaporn Anutaliya, Amy Waterhouse, Garrett S. Black, Jeremy A. Dehart, Kaitlyn M. Woods, Edward Creegan, Gad Levy, Lakshmi H Kantha, and Bulusu Subrahmanyam

Abstract

In the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air-sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the US, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air-sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ~20-day research cruise was characterized by warm sea surface temperature (SST > 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s−1). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10−12 m s−1 wind and evaporation of 0.2 mm h−1. The evolving environmental state included a deepening ocean mixed layer (from ~20 to 50 m), cooling SST (by ~ 1°C), and warming/drying of the lower to mid-troposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air-sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.

Full access
Hemantha W. Wijesekera, Emily Shroyer, Amit Tandon, M. Ravichandran, Debasis Sengupta, S. U. P. Jinadasa, Harindra J. S. Fernando, Neeraj Agrawal, K. Arulananthan, G. S. Bhat, Mark Baumgartner, Jared Buckley, Luca Centurioni, Patrick Conry, J. Thomas Farrar, Arnold L. Gordon, Verena Hormann, Ewa Jarosz, Tommy G. Jensen, Shaun Johnston, Matthias Lankhorst, Craig M. Lee, Laura S. Leo, Iossif Lozovatsky, Andrew J. Lucas, Jennifer Mackinnon, Amala Mahadevan, Jonathan Nash, Melissa M. Omand, Hieu Pham, Robert Pinkel, Luc Rainville, Sanjiv Ramachandran, Daniel L. Rudnick, Sutanu Sarkar, Uwe Send, Rashmi Sharma, Harper Simmons, Kathleen M. Stafford, Louis St. Laurent, Karan Venayagamoorthy, Ramasamy Venkatesan, William J. Teague, David W. Wang, Amy F. Waterhouse, Robert Weller, and Caitlin B. Whalen

Abstract

Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.

Full access