Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: Dúsan S. Zrnić x
- Bulletin of the American Meteorological Society x
- Refine by Access: Content accessible to me x
This is a version of a speech presented at the 27th Conference on Radar Meteorology. Relative advantages of polarimetry are contrasted with the advantages accrued by the introduction of radar into meteorology and by the addition of Doppler measurements. A description of present interests as perceived by the author follows, and possible future trends are suggested.
This is a version of a speech presented at the 27th Conference on Radar Meteorology. Relative advantages of polarimetry are contrasted with the advantages accrued by the introduction of radar into meteorology and by the addition of Doppler measurements. A description of present interests as perceived by the author follows, and possible future trends are suggested.
This paper is an overview of weather radar polarimetry emphasizing surveillance applications. The following potential benefits to operations are identified: improvement of quantitative precipitation measurements, discrimination of hail from rain with possible determination of sizes, identification of precipitation in winter storms, identification of electrically active storms, and distinction of biological scatterers (birds vs insects). Success in rainfall measurements is attributed to unique properties of differential phase. Referrals to fields of various polarimetric variables illustrate the signatures associated with different phenomena. It is argued that classifying hydrometeors is a necessary step prior to proper quantification of the water substance. The promise of polarimetry to accomplish classification is illustrated with an application to a hailstorm.
This paper is an overview of weather radar polarimetry emphasizing surveillance applications. The following potential benefits to operations are identified: improvement of quantitative precipitation measurements, discrimination of hail from rain with possible determination of sizes, identification of precipitation in winter storms, identification of electrically active storms, and distinction of biological scatterers (birds vs insects). Success in rainfall measurements is attributed to unique properties of differential phase. Referrals to fields of various polarimetric variables illustrate the signatures associated with different phenomena. It is argued that classifying hydrometeors is a necessary step prior to proper quantification of the water substance. The promise of polarimetry to accomplish classification is illustrated with an application to a hailstorm.
A detailed and unique multisensor observation of an undular bore is presented. The data include those from rawinsonde, satellite, two Doppler radars, and a tall instrumented tower. Noteworthy are Doppler radar images that resolve the wave's characteristics and capture a good part of its spatial extent. The basic parameters of the wave train are established from the observations.
A detailed and unique multisensor observation of an undular bore is presented. The data include those from rawinsonde, satellite, two Doppler radars, and a tall instrumented tower. Noteworthy are Doppler radar images that resolve the wave's characteristics and capture a good part of its spatial extent. The basic parameters of the wave train are established from the observations.
As part of the evolution and future enhancement of the Next Generation Weather Radars (NEXRAD), the National Severe Storms Laboratory recently upgraded the KOUN Weather Surveillance Radar-1988 Doppler (WSR-88D) to include a polarimetric capability. The proof of concept was tested in central Oklahoma during a 1-yr demonstration project referred to as the Joint Polarization Experiment (JPOLE). This paper presents an overview of polarimetric algorithms for rainfall estimation and hydrometeor classification and their performance during JPOLE. The quality of rainfall measurements is validated on a large dataset from the Oklahoma Mesonet and Agricultural Research Service Micronet rain gauge networks. The comparison demonstrates that polarimetric rainfall estimates are often dramatically superior to those provided by conventional rainfall algorithms. Using a synthetic R(Z, K DP, Z DR) polarimetric rainfall relation, rms errors are reduced by a factor of 1.7 for point measurements and 3.7 for areal estimates [when compared to results from a conventional R(Z) relation]. Radar data quality improvement, hail identification, rain/snow discrimination, and polarimetric tornado detection are also illustrated for selected events.
As part of the evolution and future enhancement of the Next Generation Weather Radars (NEXRAD), the National Severe Storms Laboratory recently upgraded the KOUN Weather Surveillance Radar-1988 Doppler (WSR-88D) to include a polarimetric capability. The proof of concept was tested in central Oklahoma during a 1-yr demonstration project referred to as the Joint Polarization Experiment (JPOLE). This paper presents an overview of polarimetric algorithms for rainfall estimation and hydrometeor classification and their performance during JPOLE. The quality of rainfall measurements is validated on a large dataset from the Oklahoma Mesonet and Agricultural Research Service Micronet rain gauge networks. The comparison demonstrates that polarimetric rainfall estimates are often dramatically superior to those provided by conventional rainfall algorithms. Using a synthetic R(Z, K DP, Z DR) polarimetric rainfall relation, rms errors are reduced by a factor of 1.7 for point measurements and 3.7 for areal estimates [when compared to results from a conventional R(Z) relation]. Radar data quality improvement, hail identification, rain/snow discrimination, and polarimetric tornado detection are also illustrated for selected events.
Abstract
Phased array radars (PARs) are a promising observing technology, at the cusp of being available to the broader meteorological community. PARs offer near-instantaneous sampling of the atmosphere with flexible beam forming, multifunctionality, and low operational and maintenance costs and without mechanical inertia limitations. These PAR features are transformative compared to those offered by our current reflector-based meteorological radars. The integration of PARs into meteorological research has the potential to revolutionize the way we observe the atmosphere. The rate of adoption of PARs in research will depend on many factors, including (i) the need to continue educating the scientific community on the full technical capabilities and trade-offs of PARs through an engaging dialogue with the science and engineering communities and (ii) the need to communicate the breadth of scientific bottlenecks that PARs can overcome in atmospheric measurements and the new research avenues that are now possible using PARs in concert with other measurement systems. The former is the subject of a companion article that focuses on PAR technology while the latter is the objective here.
Abstract
Phased array radars (PARs) are a promising observing technology, at the cusp of being available to the broader meteorological community. PARs offer near-instantaneous sampling of the atmosphere with flexible beam forming, multifunctionality, and low operational and maintenance costs and without mechanical inertia limitations. These PAR features are transformative compared to those offered by our current reflector-based meteorological radars. The integration of PARs into meteorological research has the potential to revolutionize the way we observe the atmosphere. The rate of adoption of PARs in research will depend on many factors, including (i) the need to continue educating the scientific community on the full technical capabilities and trade-offs of PARs through an engaging dialogue with the science and engineering communities and (ii) the need to communicate the breadth of scientific bottlenecks that PARs can overcome in atmospheric measurements and the new research avenues that are now possible using PARs in concert with other measurement systems. The former is the subject of a companion article that focuses on PAR technology while the latter is the objective here.