Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: D. C. Webb x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
T. Rossby, J. Ellis, and D. C. Webb

Abstract

To meet the expected need for wide-area acoustic navigation for Lagrangian studies of ocean circulation using RAFOS floats, a new and powerful sound source, a resonant pipe projector has been developed. It consists of a free-flooded open steel pipe with a ceramic-steel driver ring at its midsection. Conservatively demonstrated here at a source level of 195.5 dB re 1 µpa @ 1 m and with an energy conversion efficiency of 85% at resonance (260 Hz), useful operating ranges to 4000 km and beyond are possible, depending on ambient noise conditions. A successful 6-month accelerated test of the complete transducer system was recently completed near Bermuda.

Full access
Andrew R. D. Smedley, Richard C. Kift, and Ann R. Webb

Abstract

This study describes a dual-channel array spectrometer system designed to make high-frequency simultaneous spectral global irradiance and direct solar irradiance measurements covering the visible and ultraviolet wavelength ranges. The dual-channel nature of the instrument allows spectrally integrated quantities (e.g., erythema or vitamin D) to be calculated at a rate similar to broadband instruments while retrieving total column ozone (TCO) from the direct solar channel. The characterization and calibration of the instrument is discussed, with emphasis on temperature stabilization (<±0.01°C) and stray light removal. Focusing on the TCO retrieval from direct spectra, results are compared to a collocated Brewer spectrophotometer during the study period of May 2013–January 2014. Agreement for individual measurements made within 20 min of a reference Brewer direct sun observation on relatively clear example days is <1.5%. For all valid individual measurements, the study found an overall bias of 1.1 Dobson units (DU; 0.4%) and scatter of ±6.7 DU (2.2%) for retrievals obtained at airmass values < 4. A dependence on air mass of 6.3 DU (2.0%) per airmass unit is observed and a correlation of R 2 = 0.954 is found for all individual measurements, although this is reduced to 0.908 for daily means. TCO retrievals are limited to airmass values < 4 primarily because of residual structure in the transmission spectrum that cannot be attributed to other trace gases. These results are encouraging and suggest that similar instrument designs could make a significant and relatively low-cost contribution to surface measurements of atmospheric radiation.

Full access
A. R. D. Smedley, C. P. R. Saunders, and A. R. Webb

Abstract

Oversampling of optical array probes (OAPs) is described as a novel technique to increase the quality of small-particle data available in cloud microphysics. The slice rate of a 10-μm-resolution grayscale OAP is increased by a factor f with respect to that which would produce images with an aspect ratio of 1:1 for the given air velocity and probe resolution. The Fresnel diffraction pattern is simulated and the probe response calculated for normal (f = 1) and oversampled (f = 10) cases. The increased number of pixels imaged by the OAP permits the fraction of 25%–50% shadowed pixels to be used to obtain a much improved estimate of the actual droplet diameter for droplets between 7 and 50 μm in diameter. The process of oversampling is also found to significantly increase the sample area for the smallest particles. Example laboratory particle size distributions are provided. The oversampling factor for an individual probe is limited by the maximum sampling frequency, the airspeed, and the probe resolution.

Full access
R. E. Davis, L. A. Regier, J. Dufour, and D. C. Webb

Abstract

The autonomous Lagrangian circulation explorer (ALACE) is a subsurface float that cycles vertically from a depth where it is neutrally buoyant to the surface where it is located by, and relays data to, System Argos satellites. ALACEs are intended to permit exploration of large-scale low-frequency currents and to provide repeated vertical profiles of mean variables. ALACEs periodically change their buoyancy by pumping hydraulic fluid from an internal reservoir to an external bladder, thereby increasing float volume and buoyancy. Because positioning and data relay are accomplished by satellite, ALACEs are autonomous of acoustic tracking networks and are suitable for global deployment in arrays of any size. While providing only a sequence of displacements between surfacing intervals, ALACEs are efficient in gathering the widely spaced long-term observations needed to map large-scale average flow.

The primary technical challenges met in the ALACE design are maximizing energy efficiency to achieve a lifetime of 50 surfacing cycles over several year., achieving reliable satellite communication with minimal surface buoyancy, and developing overall system reliability in an instrument that cannot be recovered or diagnosed after most failures. This paper describes the ALACE system, design specifications, and some field experiences. The singular failure of a simple dynamical model to predict the surface following behavior of scale models in laboratory tests serves as a cautionary note in using simple models to infer the dynamics of surface floats in various oceanographic applications. The limitations of interpreting the sequence of net displacements between surface positions, including errors caused by surface drift, are also discussed.

Full access
Tokuta Yokohata, Mark J. Webb, Matthew Collins, Keith D. Williams, Masakazu Yoshimori, Julia C. Hargreaves, and James D. Annan

Abstract

The equilibrium climate sensitivity (ECS) of the two perturbed physics ensembles (PPE) generated using structurally different GCMs, Model for Interdisciplinary Research on Climate (MIROC3.2) and the Third Hadley Centre Atmospheric Model with slab ocean (HadSM3), is investigated. A method to quantify the shortwave (SW) cloud feedback by clouds with different cloud-top pressure is developed. It is found that the difference in the ensemble means of the ECS between the two ensembles is mainly caused by differences in the SW low-level cloud feedback. The ensemble mean SW cloud feedback and ECS of the MIROC3.2 ensemble is larger than that of the HadSM3 ensemble. This is likely related to the 1XCO2 low-level cloud albedo of the former being larger than that of the latter. It is also found that the largest contribution to the within-ensemble variation of ECS comes from the SW low-level cloud feedback in both ensembles. The mechanism that causes the within-ensemble variation is different between the two ensembles. In the HadSM3 ensemble, members with large 1XCO2 low-level cloud albedo have large SW cloud feedback and large ECS; ensemble members with large 1XCO2 cloud cover have large negative SW cloud feedback and relatively low ECS. In the MIROC3.2 ensemble, the 1XCO2 low-level cloud albedo is much more tightly constrained, and no relationship is found between it and the cloud feedback. These results indicate that both the parametric uncertainties sampled in PPEs and the structural uncertainties of GCMs are important and worth further investigation.

Full access
B. Cornuelle, C. Wunsch, D. Behringer, T. Birdsall, M. Brown, R. Heinmiller, R. Knox, K. Metzger, W. Munk, J. Spiesberger, R. Spindel, D. Webb, and P. Worcester

Abstract

A field test of ocean acoustic tomography was conducted in 1981 for a two month period in a 300 km square at 26°N, 70°W in the North Atlantic (just south of the MODE region). Nine acoustic deep-sea moorings with sea floor transponders for automated position keeping and with provisions for precise time keeping were set and recovered. From the measured travel times between moorings, various displays of the three-dimensional field of sound speed (closely related to temperature) have been obtained by inversion procedures. These procedures use historical ocean data as a reference, but all information from the in situ surveys has been withheld; the “pure” tomographic results were then compared to direct in situ observations. The tomographically derived spatial mean profile compares favorably to an equivalent profile from the in situ observations; both differ significantly from the historical average. Maps constructed at three day intervals for a two month period show a pattern of eddy structure in agreement with the direct observations within computed mapping errors, but these mapping errors are too large for many oceanographic purposes. The mapping errors are the result of an unexpectedly large noise variance in travel time. (A 1983 experiment, using sources with larger bandwidth, reduced this variance to acceptable limits.) The 1981 tomographic results strongly suggest that the ocean sometimes undergoes transitions too rapid to be mapped over such large areas by shipboard observations.

Full access
K. E. Taylor, M. Crucifix, P. Braconnot, C. D. Hewitt, C. Doutriaux, A. J. Broccoli, J. F. B. Mitchell, and M. J. Webb

Abstract

Feedback analysis in climate models commonly involves decomposing any change in the system’s energy balance into radiative forcing terms due to prescribed changes, and response terms due to the radiative effects of changes in model variables such as temperature, water vapor, clouds, sea ice, and snow. The established “partial radiative perturbation” (PRP) method allows an accurate separation of these terms, but requires processing large volumes of model output with an offline version of the model’s radiation code. Here, we propose an “approximate PRP” (APRP) method for the shortwave that provides an accurate estimate of the radiative perturbation, but derived from a quite modest amount of monthly mean model output.

The APRP method is based on a simplified shortwave radiative model of the atmosphere, where surface absorption and atmospheric scattering and absorption are represented by means of three parameters that are diagnosed for overcast and clear-sky portions of each model grid cell. The accuracy of the method is gauged relative to full PRP calculations in two experiments: one in which carbon dioxide concentration is doubled and another in which conditions of the Last Glacial Maximum (LGM) are simulated. The approximate PRP method yields a shortwave cloud feedback accurate in the global mean to within 7%. Forcings and feedbacks due to surface albedo and noncloud atmospheric constituents are also well approximated with errors of order 5%–10%. Comparison of two different model simulations of the LGM shows that the regional and global differences in their ice sheet albedo forcing fields are clearly captured by the APRP method. Hence this method is an efficient and satisfactory tool for studying and intercomparing shortwave forcing and feedbacks in climate models.

Full access
Julie A. Vano, Bradley Udall, Daniel R. Cayan, Jonathan T. Overpeck, Levi D. Brekke, Tapash Das, Holly C. Hartmann, Hugo G. Hidalgo, Martin Hoerling, Gregory J. McCabe, Kiyomi Morino, Robert S. Webb, Kevin Werner, and Dennis P. Lettenmaier

The Colorado River is the primary water source for more than 30 million people in the United States and Mexico. Recent studies that project streamf low changes in the Colorado River all project annual declines, but the magnitude of the projected decreases range from less than 10% to 45% by the mid-twenty-first century. To understand these differences, we address the questions the management community has raised: Why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted? We identify four major sources of disparities among studies that arise from both methodological and model differences. In order of importance, these are differences in 1) the global climate models (GCMs) and emission scenarios used; 2) the ability of land surface and atmospheric models to simulate properly the high-elevation runoff source areas; 3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and 4) the methods used to statistically downscale GCM scenarios. In accounting for these differences, there is substantial evidence across studies that future Colorado River streamflow will be reduced under the current trajectories of anthropogenic greenhouse gas emissions because of a combination of strong temperature-induced runoff curtailment and reduced annual precipitation. Reconstructions of preinstrumental streamflows provide additional insights; the greatest risk to Colorado River streamf lows is a multidecadal drought, like that observed in paleoreconstructions, exacerbated by a steady reduction in flows due to climate change. This could result in decades of sustained streamflows much lower than have been observed in the ~100 years of instrumental record.

Full access
T. Keenan, P. Joe, J. Wilson, C. Collier, B. Golding, D. Burgess, P. May, C. Pierce, J. Bally, A. Crook, A. Seed, D. Sills, L. Berry, R. Potts, I. Bell, N. Fox, E. Ebert, M. Eilts, K. O'Loughlin, R. Webb, R. Carbone, K. Browning, R. Roberts, and C. Mueller

The first World Weather Research Programme (WWRP) Forecast Demonstration Project (FDP), with a focus on nowcasting, was conducted in Sydney, Australia, from 4 September to 21 November 2000 during a period associated with the Sydney 2000 Olympic Games. Through international collaboration, nine nowcasting systems from the United States, United Kingdom, Canada, and Australia were deployed at the Sydney Office of the Bureau of Meteorology (BOM) to demonstrate the capability of modern forecast systems and to quantify the associated benefits in the delivery of a real-time nowcast service. On-going verification and impact studies supported by international committees assisted by the WWRP formed an integral part of this project. A description is given of the project, including component systems, the weather, and initial outcomes. Initial results show that the nowcasting systems tested were transferable and able to provide valuable information enhancing BOM nowcasts. The project provided for unprecedented interchange of concepts and ideas between forecasters, researchers, and end users in an operational framework where they all faced common issues relevant to real time nowcast decision making. A training workshop sponsored by the World Meteorological Organization (WMO) was also held in conjunction with the project so that other member nations could benefit from the FDP.

Full access
Randall M. Dole, J. Ryan Spackman, Matthew Newman, Gilbert P. Compo, Catherine A. Smith, Leslie M. Hartten, Joseph J. Barsugli, Robert S. Webb, Martin P. Hoerling, Robert Cifelli, Klaus Wolter, Christopher D. Barnet, Maria Gehne, Ronald Gelaro, George N. Kiladis, Scott Abbott, Elena Akish, John Albers, John M. Brown, Christopher J. Cox, Lisa Darby, Gijs de Boer, Barbara DeLuisi, Juliana Dias, Jason Dunion, Jon Eischeid, Christopher Fairall, Antonia Gambacorta, Brian K. Gorton, Andrew Hoell, Janet Intrieri, Darren Jackson, Paul E. Johnston, Richard Lataitis, Kelly M. Mahoney, Katherine McCaffrey, H. Alex McColl, Michael J. Mueller, Donald Murray, Paul J. Neiman, William Otto, Ola Persson, Xiao-Wei Quan, Imtiaz Rangwala, Andrea J. Ray, David Reynolds, Emily Riley Dellaripa, Karen Rosenlof, Naoko Sakaeda, Prashant D. Sardeshmukh, Laura C. Slivinski, Lesley Smith, Amy Solomon, Dustin Swales, Stefan Tulich, Allen White, Gary Wick, Matthew G. Winterkorn, Daniel E. Wolfe, and Robert Zamora

Abstract

Forecasts by mid-2015 for a strong El Niño during winter 2015/16 presented an exceptional scientific opportunity to accelerate advances in understanding and predictions of an extreme climate event and its impacts while the event was ongoing. Seizing this opportunity, the National Oceanic and Atmospheric Administration (NOAA) initiated an El Niño Rapid Response (ENRR), conducting the first field campaign to obtain intensive atmospheric observations over the tropical Pacific during El Niño.

The overarching ENRR goal was to determine the atmospheric response to El Niño and the implications for predicting extratropical storms and U.S. West Coast rainfall. The field campaign observations extended from the central tropical Pacific to the West Coast, with a primary focus on the initial tropical atmospheric response that links El Niño to its global impacts. NOAA deployed its Gulfstream-IV (G-IV) aircraft to obtain observations around organized tropical convection and poleward convective outflow near the heart of El Niño. Additional tropical Pacific observations were obtained by radiosondes launched from Kiritimati , Kiribati, and the NOAA ship Ronald H. Brown, and in the eastern North Pacific by the National Aeronautics and Space Administration (NASA) Global Hawk unmanned aerial system. These observations were all transmitted in real time for use in operational prediction models. An X-band radar installed in Santa Clara, California, helped characterize precipitation distributions. This suite supported an end-to-end capability extending from tropical Pacific processes to West Coast impacts. The ENRR observations were used during the event in operational predictions. They now provide an unprecedented dataset for further research to improve understanding and predictions of El Niño and its impacts.

Open access