Search Results

You are looking at 1 - 10 of 17 items for

  • Author or Editor: D. L. Hartmann x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Eric D. Maloney
and
Dennis L. Hartmann

Abstract

Low-level barotropic dynamics may help to explain the modulation of eastern and western North Pacific tropical cyclones by the Madden–Julian oscillation (MJO) during Northern Hemisphere summer. The MJO is characterized by alternating periods of westerly and easterly 850-mb zonal wind anomalies across the tropical Pacific Ocean. When MJO 850-mb wind anomalies are westerly, small-scale, slow-moving eddies grow through barotropic eddy kinetic energy (EKE) conversion from the mean flow. These growing eddies, together with strong surface convergence, 850-mb cyclonic shear, and high mean sea surface temperatures, create a favorable environment for tropical cyclone formation. Periods of strong MJO easterlies over the Pacific are characterized by lesser EKE and negligible eddy growth by barotropic conversion.

The term −u2u/∂x is a leading contributor to low-level barotropic EKE conversion during MJO westerly periods across the Pacific, indicating the importance of zonal variations in the westerly jet for producing concentrations of eddy energy. This mechanism can be described as wave accumulation associated with variations of the low-level zonal flow. The conversion term −uυu/∂y contributes a smaller portion of the total conversion over the eastern Pacific, but is of comparable importance to −u2u/∂x during westerly MJO events in the western Pacific.

Full access
Dennis L. Hartmann
and
Eric D. Maloney

Abstract

A stochastic barotropic model linearized about the 850-mb flow is used to investigate the relationship between wind variations associated with the Madden–Julian oscillation (MJO) and eddy kinetic energy variations in the Tropics. Such a model is successful in predicting the observed location of eddy kinetic energy maxima during the westerly phase of the MJO and the suppression of eddy activity during the easterly phase of the MJO. The concentration of eddy energy during the westerly phase results from the strong east–west and north–south gradients of the large-scale wind fields. The model shows that barotropic wave propagation and wave mean–flow interaction tend to concentrate small-scale Rossby wave energy in regions of convergence, which may be an important mechanism for organizing convection into tropical cyclones. The structure and barotropic energetics of the wave activity are similar to those observed, but the modeled eddies are smaller in scale and do not move westward as do the observed eddies. The eddies that dominate the observed correlations are heavily modified by convection, but barotropic processes can explain the localization of eddy energy by the MJO that is observed.

Full access
Eric D. Maloney
and
Dennis L. Hartmann

Abstract

The National Center for Atmospheric Research (NCAR) Community Climate Model, version 3.6 (CCM3) simulation of tropical intraseasonal variability in zonal winds and precipitation can be improved by implementing the microphysics of cloud with relaxed Arakawa–Schubert (McRAS) convection scheme of Sud and Walker. The default CCM3 convection scheme of Zhang and McFarlane produces intraseasonal variability in both zonal winds and precipitation that is much lower than is observed. The convection scheme of Hack produces high tropical intraseasonal zonal wind variability but no coherent convective variability at intraseasonal timescales and low wavenumbers. The McRAS convection scheme produces realistic variability in tropical intraseasonal zonal winds and improved intraseasonal variability in tropical precipitation, although the variability in precipitation is somewhat less than is observed. Intraseasonal variability in CCM3 with the McRAS scheme is highly sensitive to the parameterization of convective precipitation evaporation in unsaturated environmental air and unsaturated downdrafts. Removing these effects greatly reduces intraseasonal variability in the model. Convective evaporation processes in McRAS affect intraseasonal variability mainly through their time-mean effects and not through their variations. Convective rain evaporation and unsaturated downdrafts improve the modeled specific humidity and temperature climates of the Tropics and increase convection on the equator. Intraseasonal variability in CCM3 with McRAS is not improved by increasing the boundary layer relative humidity threshold for initiation of convection, contrary to the results of Wang and Schlesinger. In fact, intraseasonal variability is reduced for higher thresholds. The largest intraseasonal moisture variations during a model Madden–Julian oscillation life cycle occur above the boundary layer, and humidity variations within the boundary layer are small.

Full access
Mark D. Zelinka
and
Dennis L. Hartmann

Abstract

Feedbacks determine the efficiency with which the climate system comes back into equilibrium in response to a radiative perturbation. Although feedbacks are integrated quantities, the processes from which they arise have rich spatial structures that alter the distribution of top of atmosphere (TOA) net radiation. Here, the authors investigate the implications of the structure of climate feedbacks for the change in poleward energy transport as the planet warms over the twenty-first century in a suite of GCMs. Using radiative kernels that describe the TOA radiative response to small perturbations in temperature, water vapor, and surface albedo, the change in poleward energy flux is partitioned into the individual feedbacks that cause it.

This study finds that latitudinal gradients in the sum of climate feedbacks reinforce the preexisting latitudinal gradient in TOA net radiation, requiring that the climate system transport more energy to the poles on a warming planet. This is primarily due to structure of the water vapor and cloud feedbacks, which are strongly positive at low latitudes and decrease dramatically with increasing latitude. Using the change in surface fluxes, the authors partition the anomalous poleward energy flux between the atmosphere and ocean and find that reduced heat flux from the high-latitude ocean further amplifies the equator-to-pole gradient in atmospheric energy loss. This implied reduction in oceanic poleward energy flux requires the atmosphere to increase its share of the total poleward energy transport. As is the case for climate sensitivity, the largest source of intermodel spread in the change in poleward energy transport can be attributed to the shortwave cloud feedback.

Full access
Mark D. Borges
and
Dennis L. Hartmann

Abstract

An eigenvalue analysis of a divergent barotropic model on a sphere is extended to the formulation of a global optimization problem, whose solution selects an initial perturbation that evolves into the most energetic structure at a finite time interval, τ. The evolution of this perturbation is obtained from companion linear and nonlinear global spectral time-dependent models, and the optimization prediction of perturbation size at time τ is verified. Two zonally asymmetric flows defined by time-mean ECMWF global 300-mb analyses during winter 1985/86 are used to illustrate the application and insights provided by the optimization problem.

The dependence of the optimal perturbations on the parameter τ is examined. The optimal perturbations become increasingly localized as τ is decreased to periods on the order of three days. The initial growth rates of these perturbations greatly exceed that of the most unstable normal mode, and also exceed the growth rate of a disturbance with maximum projection onto the most unstable mode (i.e., the adjoint structure). Furthermore, the development of the optimal perturbations in the nonlinear model is in reasonable agreement with the available observations. The optimal perturbations may thus be more important than either the eigenmode or adjoint structure for determining the stability and expected behavior of anomalies to some time-mean flows.

Full access
Mark D. Zelinka
and
Dennis L. Hartmann

Abstract

Currently available satellite data can be used to track the response of clouds and humidity to intense precipitation events. A compositing technique centered in space and time on locations experiencing high rain rates is used to detail the characteristic evolution of several quantities measured from a suite of satellite instruments. Intense precipitation events in the convective tropics are preceded by an increase in low-level humidity. Optically thick cold clouds accompany the precipitation burst, which is followed by the development of spreading upper-level anvil clouds and an increase in upper-tropospheric humidity over a broader region than that occupied by the precipitation anomalies. The temporal separation between the convective event and the development of anvil clouds is about 3 h. The humidity increase at upper levels and the associated decrease in clear-sky longwave emission persist for many hours after the convective event. Large-scale vertical motions from reanalysis show a coherent evolution associated with precipitation events identified in an independent dataset: precipitation events begin with stronger upward motion anomalies in the lower troposphere, which then evolve toward stronger upward motion anomalies in the upper troposphere, in conjunction with the development of anvil clouds. Greater upper-tropospheric moistening and cloudiness are associated with larger-scale and better-organized convective systems, but even weaker, more isolated systems produce sustained upper-level humidity and clear-sky outgoing longwave radiation anomalies.

Full access
Eric D. Maloney
and
Dennis L. Hartmann

Abstract

Hurricane and tropical storm statistics verify the modulation of eastern Pacific tropical systems by the Madden–Julian oscillation (MJO) as hypothesized by Maloney and Hartmann. Over twice as many named tropical systems (hurricanes and tropical storms) accompany equatorial 850-mb westerly anomalies than accompany equatorial easterly anomalies, and the systems that do exist are stronger. Hurricanes are over four times more numerous during westerly phases of the MJO than during easterly phases.

The current study constructs a composite life cycle of the MJO during May–November 1979–95 using an index based on the 850-mb equatorial zonal wind. Equatorial Kelvin waves propagating eastward from convective regions of the western Pacific Ocean alter dynamical conditions over the eastern Pacific Ocean. Westerly (easterly) equatorial 850-mb wind anomalies are accompanied by enhanced (suppressed) convection over the eastern Pacific hurricane region. Convection locally amplifies the wind anomalies over the eastern Pacific.

Cyclonic horizontal shear of the low-level zonal wind and low vertical wind shear support tropical cyclogenesis. Periods of equatorial 850-mb westerly wind anomalies associated with the MJO are accompanied by cyclonic low-level relative vorticity anomalies and near-zero vertical wind shear over the eastern Pacific hurricane region. Easterly periods are accompanied by anticyclonic vorticity anomalies and less-favorable vertical wind shear. The vorticity anomalies are associated with variations in the meridional shear of the zonal wind.

Full access
Eric D. Maloney
and
Dennis L. Hartmann

Abstract

A composite life cycle of the Madden–Julian oscillation (MJO) is constructed using an index based on the first two EOFs of the bandpass-filtered (20–80 days) 850-mb zonal wind averaged from 5°N to 5°S every 2.5° around the equator. Precipitation, 1000-mb convergence, 850-mb wind, and 200-mb wind are composited for the period 1979–95. Water vapor integrated from the surface to 300 mb is composited for the period 1988–92.

Frictional moisture convergence at the equator is shown to play an important role in the life cycle of the Madden–Julian oscillation (MJO). Regions of boundary layer convergence foster growth of positive water vapor anomalies to the east of convection. This convergence coincides with 850-mb easterly wind anomalies, as is consistent with Kelvin wave dynamics. Drying of the atmosphere occurs rapidly after the passage of convection with the onset of 850-mb westerly perturbations. Possible mechanisms for this drying include boundary layer divergence and subsidence or horizontal advection from the west or extratropics associated with Rossby wave circulations. Frictional convergence in front of convection helps to slowly moisten the atmosphere to a state that is again favorable for convection. This moistening may set the timescale for the reinitiation of convection in the Indian and west Pacific Oceans after strong drying and provides a mechanism for slow eastward propagation. A significant correlation exists between surface convergence and column water vapor anomalies in the west Pacific and Indian Oceans. Weaker correlations exist between 850-mb convergence and water vapor anomalies. Over the west Pacific, surface convergence leads positive water vapor anomalies, while 850-mb convergence lags positive water vapor anomalies.

Northern Hemisphere summer (May–October) composites show that the phases of the MJO coincide with“active” and “break” periods of the Indian summer monsoon at intraseasonal timescales. The northward propagation of precipitation across India during the summer monsoon is associated with northward and westward movement of Rossby wave features trailing the main center of equatorial convection associated with the MJO.

Full access
D. L. Hartmann
,
L. A. Moy
, and
Q. Fu
Full access
Mark D. Zelinka
,
Stephen A. Klein
, and
Dennis L. Hartmann

Abstract

This study proposes a novel technique for computing cloud feedbacks using histograms of cloud fraction as a joint function of cloud-top pressure (CTP) and optical depth (τ). These histograms were generated by the International Satellite Cloud Climatology Project (ISCCP) simulator that was incorporated into doubled-CO2 simulations from 11 global climate models in the Cloud Feedback Model Intercomparison Project. The authors use a radiative transfer model to compute top of atmosphere flux sensitivities to cloud fraction perturbations in each bin of the histogram for each month and latitude. Multiplying these cloud radiative kernels with histograms of modeled cloud fraction changes at each grid point per unit of global warming produces an estimate of cloud feedback. Spatial structures and globally integrated cloud feedbacks computed in this manner agree remarkably well with the adjusted change in cloud radiative forcing. The global and annual mean model-simulated cloud feedback is dominated by contributions from medium thickness (3.6 < τ ≤ 23) cloud changes, but thick (τ > 23) cloud changes cause the rapid transition of cloud feedback values from positive in midlatitudes to negative poleward of 50°S and 70°N. High (CTP ≤ 440 hPa) cloud changes are the dominant contributor to longwave (LW) cloud feedback, but because their LW and shortwave (SW) impacts are in opposition, they contribute less to the net cloud feedback than do the positive contributions from low (CTP > 680 hPa) cloud changes. Midlevel (440 < CTP ≤ 680 hPa) cloud changes cause positive SW cloud feedbacks that are 80% as large as those due to low clouds. Finally, high cloud changes induce wider ranges of LW and SW cloud feedbacks across models than do low clouds.

Full access