Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: D. R. Marsh x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Fabrizio Sassi
,
R. R. Garcia
,
D. Marsh
, and
K. W. Hoppel

Abstract

This paper compares present-day simulations made with two state-of-the-art climate models: a conventional model specifically designed to represent the tropospheric climate, which has a poorly resolved middle atmosphere, and a configuration that is built on the same physics and numerical algorithms but represents realistically the middle atmosphere and lower thermosphere. The atmospheric behavior is found to be different between the two model configurations, and it is shown that the differences in the two simulations can be attributed to differences in the behavior of the zonal mean state of the stratosphere, where reflection of quasi-stationary resolved planetary waves from the lid of the low-top model is prominent; the more realistic physics in the high-top model is not relevant. It is also shown that downward propagation of zonal wind anomalies during weak stratospheric vortex events is substantially different in the two model configurations. These findings extend earlier results that a poorly resolved stratosphere can influence simulations throughout the troposphere.

Full access
N. Calvo
,
R. R. Garcia
,
W. J. Randel
, and
D. R. Marsh

Abstract

The Brewer–Dobson circulation strengthens in the lowermost tropical stratosphere during warm El Niño–Southern Oscillation (ENSO) events. Dynamical analyses using the most recent version of the Whole Atmosphere Community Climate Model show that this is due mainly to anomalous forcing by orographic gravity waves, which maximizes in the Northern Hemisphere subtropics between 18 and 22 km, especially during the strongest warm ENSO episodes. Anomalies in the meridional gradient of temperature in the upper troposphere and lower stratosphere (UTLS) are produced during warm ENSO events, accompanied by anomalies in the location and intensity of the subtropical jets. This anomalous wind pattern alters the propagation and dissipation of the parameterized gravity waves, which ultimately force increases in tropical upwelling in the lowermost stratosphere. During cold ENSO events a similar signal, but of opposite sign, is present in the model simulations. The signals in ozone and water vapor produced by ENSO events in the UTLS are also investigated.

Full access