Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: David A. Schecter x
- Journal of Applied Meteorology and Climatology x
- Refine by Access: Content accessible to me x
Abstract
This paper presents a convenient method for diagnosing the sources of infrasound in a numerical simulation of a convective storm. The method is based on an exact acoustic wave equation for the perturbation Exner function Π′. One notable source term (Suu ) in the Π′ equation is commonly associated with adiabatic vortex fluctuations, whereas another (Sm ) is directly connected to the heat and mass generated or removed during phase transitions of moisture. Scale estimates suggest that other potential sources are usually unimportant. Simple numerical simulations of a disturbed vortex and evaporating cloud droplets are carried out to illustrate the infrasound of Suu and Sm . Moreover, the diagnostic method is applied to a towering cumulonimbus simulation that incorporates multiple categories of ice, liquid, and mixed-phase hydrometeors. The sensitivity of Sm to the modeling of the hail-to-rain category conversion is briefly addressed.
Abstract
This paper presents a convenient method for diagnosing the sources of infrasound in a numerical simulation of a convective storm. The method is based on an exact acoustic wave equation for the perturbation Exner function Π′. One notable source term (Suu ) in the Π′ equation is commonly associated with adiabatic vortex fluctuations, whereas another (Sm ) is directly connected to the heat and mass generated or removed during phase transitions of moisture. Scale estimates suggest that other potential sources are usually unimportant. Simple numerical simulations of a disturbed vortex and evaporating cloud droplets are carried out to illustrate the infrasound of Suu and Sm . Moreover, the diagnostic method is applied to a towering cumulonimbus simulation that incorporates multiple categories of ice, liquid, and mixed-phase hydrometeors. The sensitivity of Sm to the modeling of the hail-to-rain category conversion is briefly addressed.
Abstract
The dynamical core of the Regional Atmospheric Modeling System has been tailored to simulate the infrasound of vortex motions and diabatic cloud processes in a convective storm. Earlier studies have shown that the customized model (c-RAMS) adequately simulates the infrasonic emissions of generic vortex oscillations. This paper provides evidence that c-RAMS accurately simulates the infrasound associated with parameterized phase transitions of cloud moisture. Specifically, analytical expressions are derived for the infrasonic emissions of evaporating water droplets in dry and humid environments. The dry analysis considers two single-moment parameterizations of the microphysics, which have distinguishable acoustic signatures. In general, the analytical results agree with the numerical output of the model. An appendix briefly demonstrates the ability of c-RAMS to accurately simulate the infrasound of the entropy and mass sources generated by an equilibrating cloud of icy hydrometeors.
Abstract
The dynamical core of the Regional Atmospheric Modeling System has been tailored to simulate the infrasound of vortex motions and diabatic cloud processes in a convective storm. Earlier studies have shown that the customized model (c-RAMS) adequately simulates the infrasonic emissions of generic vortex oscillations. This paper provides evidence that c-RAMS accurately simulates the infrasound associated with parameterized phase transitions of cloud moisture. Specifically, analytical expressions are derived for the infrasonic emissions of evaporating water droplets in dry and humid environments. The dry analysis considers two single-moment parameterizations of the microphysics, which have distinguishable acoustic signatures. In general, the analytical results agree with the numerical output of the model. An appendix briefly demonstrates the ability of c-RAMS to accurately simulate the infrasound of the entropy and mass sources generated by an equilibrating cloud of icy hydrometeors.