Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: David P. Edwards x
- Refine by Access: Content accessible to me x
Abstract
During summer, significant changes in marine atmospheric boundary layer (MABL) speed and depth occur over small spatial scales (<100 km) downstream from topographic features along the California coast. In June and July 1996, the Coastal Waves 96 project collected observations of such changes at capes with an instrumented aircraft. This paper presents observations from the 7 June flight, when the layer-averaged speed increased 9 m s−1 and depth decreased by 500 m over a 75-km downwind from Cape Mendocino, accompanied by enhanced surface fluxes and local cloud clearing. The acceleration and thinning are reproduced when the flow is modeled as a shallow transcritical layer of fluid impinging the bends of a coastal wall, leading to the interpretation that they are produced by an expansion fan. Model runs were produced with different coastlines and imposed pressure gradients, with the best match provided by a coastline in which the cape protruded into the flow and forced a response in the subcritical region upstream of the cape. A hydraulic jump was produced at a second bend, near where the aircraft's lidar observed the MABL height to increase. Light variable winds observed within Shelter Cove were replicated in model flows in which the flow separated from the coastline. Though highly idealized, the shallow-water model provided a satisfactory representation of the main features of the observed flow.
Abstract
During summer, significant changes in marine atmospheric boundary layer (MABL) speed and depth occur over small spatial scales (<100 km) downstream from topographic features along the California coast. In June and July 1996, the Coastal Waves 96 project collected observations of such changes at capes with an instrumented aircraft. This paper presents observations from the 7 June flight, when the layer-averaged speed increased 9 m s−1 and depth decreased by 500 m over a 75-km downwind from Cape Mendocino, accompanied by enhanced surface fluxes and local cloud clearing. The acceleration and thinning are reproduced when the flow is modeled as a shallow transcritical layer of fluid impinging the bends of a coastal wall, leading to the interpretation that they are produced by an expansion fan. Model runs were produced with different coastlines and imposed pressure gradients, with the best match provided by a coastline in which the cape protruded into the flow and forced a response in the subcritical region upstream of the cape. A hydraulic jump was produced at a second bend, near where the aircraft's lidar observed the MABL height to increase. Light variable winds observed within Shelter Cove were replicated in model flows in which the flow separated from the coastline. Though highly idealized, the shallow-water model provided a satisfactory representation of the main features of the observed flow.
Abstract
Data from the first research flight (RF01) of the second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study are used to evaluate the fidelity with which large-eddy simulations (LESs) can represent the turbulent structure of stratocumulus-topped boundary layers. The initial data and forcings for this case placed it in an interesting part of parameter space, near the boundary where cloud-top mixing is thought to render the cloud layer unstable on the one hand, or tending toward a decoupled structure on the other hand. The basis of this evaluation consists of sixteen 4-h simulations from 10 modeling centers over grids whose vertical spacing was 5 m at the cloud-top interface and whose horizontal spacing was 35 m. Extensive sensitivity studies of both the configuration of the case and the numerical setup also enhanced the analysis. Overall it was found that (i) if efforts are made to reduce spurious mixing at cloud top, either by refining the vertical grid or limiting the effects of the subgrid model in this region, then the observed turbulent and thermodynamic structure of the layer can be reproduced with some fidelity; (ii) the base, or native configuration of most simulations greatly overestimated mixing at cloud top, tending toward a decoupled layer in which cloud liquid water path and turbulent intensities were grossly underestimated; (iii) the sensitivity of the simulations to the representation of mixing at cloud top is, to a certain extent, amplified by particulars of this case. Overall the results suggest that the use of LESs to map out the behavior of the stratocumulus-topped boundary layer in this interesting region of parameter space requires a more compelling representation of processes at cloud top. In the absence of significant leaps in the understanding of subgrid-scale (SGS) physics, such a representation can only be achieved by a significant refinement in resolution—a refinement that, while conceivable given existing resources, is probably still beyond the reach of most centers.
Abstract
Data from the first research flight (RF01) of the second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study are used to evaluate the fidelity with which large-eddy simulations (LESs) can represent the turbulent structure of stratocumulus-topped boundary layers. The initial data and forcings for this case placed it in an interesting part of parameter space, near the boundary where cloud-top mixing is thought to render the cloud layer unstable on the one hand, or tending toward a decoupled structure on the other hand. The basis of this evaluation consists of sixteen 4-h simulations from 10 modeling centers over grids whose vertical spacing was 5 m at the cloud-top interface and whose horizontal spacing was 35 m. Extensive sensitivity studies of both the configuration of the case and the numerical setup also enhanced the analysis. Overall it was found that (i) if efforts are made to reduce spurious mixing at cloud top, either by refining the vertical grid or limiting the effects of the subgrid model in this region, then the observed turbulent and thermodynamic structure of the layer can be reproduced with some fidelity; (ii) the base, or native configuration of most simulations greatly overestimated mixing at cloud top, tending toward a decoupled layer in which cloud liquid water path and turbulent intensities were grossly underestimated; (iii) the sensitivity of the simulations to the representation of mixing at cloud top is, to a certain extent, amplified by particulars of this case. Overall the results suggest that the use of LESs to map out the behavior of the stratocumulus-topped boundary layer in this interesting region of parameter space requires a more compelling representation of processes at cloud top. In the absence of significant leaps in the understanding of subgrid-scale (SGS) physics, such a representation can only be achieved by a significant refinement in resolution—a refinement that, while conceivable given existing resources, is probably still beyond the reach of most centers.
We review the progress of tropospheric trace gas observations and address the need for additional measurement capabilities as recommended by the National Research Council. Tropospheric measurements show pollution in the Northern Hemisphere as a result of fossil fuel burning and a strong seasonal dependence with the largest amounts of carbon monoxide and nitrogen dioxide in the winter and spring. In the summer, when photochemistry is most intense, photochemically generated ozone is found in large concentrations over and downwind from where anthropogenic sources are largest, such as the eastern United States and eastern China. In the tropics and the subtropics, where photon flux is strong throughout the year, trace gas concentrations are driven by the abundance of the emissions. The largest single tropical source of pollution is biomass burning, as can be seen readily in carbon monoxide measurements, but lightning and biogenic trace gases may also contribute to trace gas variability. Although substantive progress has been achieved in seasonal and global mapping of a few tropospheric trace gases, satellite trace gas observations with considerably better temporal and spatial resolution are essential to forecasting air quality at the spatial and temporal scales required by policy makers. The concurrent use of atmospheric composition measurements for both scientific and operational purposes is a new paradigm for the atmospheric chemistry community. The examples presented illustrate both the promise and challenge of merging satellite information with in situ observations in state-of-the-art data assimilation models.
We review the progress of tropospheric trace gas observations and address the need for additional measurement capabilities as recommended by the National Research Council. Tropospheric measurements show pollution in the Northern Hemisphere as a result of fossil fuel burning and a strong seasonal dependence with the largest amounts of carbon monoxide and nitrogen dioxide in the winter and spring. In the summer, when photochemistry is most intense, photochemically generated ozone is found in large concentrations over and downwind from where anthropogenic sources are largest, such as the eastern United States and eastern China. In the tropics and the subtropics, where photon flux is strong throughout the year, trace gas concentrations are driven by the abundance of the emissions. The largest single tropical source of pollution is biomass burning, as can be seen readily in carbon monoxide measurements, but lightning and biogenic trace gases may also contribute to trace gas variability. Although substantive progress has been achieved in seasonal and global mapping of a few tropospheric trace gases, satellite trace gas observations with considerably better temporal and spatial resolution are essential to forecasting air quality at the spatial and temporal scales required by policy makers. The concurrent use of atmospheric composition measurements for both scientific and operational purposes is a new paradigm for the atmospheric chemistry community. The examples presented illustrate both the promise and challenge of merging satellite information with in situ observations in state-of-the-art data assimilation models.
Some of the highlights of an experiment designed to study coastal atmospheric phenomena along the California coast (Coastal Waves 1996 experiment) are described. This study was designed to address several problems, including the cross-shore variability and turbulent structure of the marine boundary layer, the influence of the coast on the development of the marine layer and clouds, the ageostrophy of the flow, the dynamics of trapped events, the parameterization of surface fluxes, and the supercriticality of the marine layer.
Based in Monterey, California, the National Center for Atmospheric Research (NCAR) C-130 Hercules and the University of North Carolina Piper Seneca obtained a comprehensive set of measurements on the structure of the marine layer. The study focused on the effects of prominent topographic features on the wind. Downstream of capes and points, narrow bands of high winds are frequently encountered. The NCAR-designed Scanning Aerosol Backscatter Lidar (SABL) provided a unique opportunity to connect changes in the depth of the boundary layer with specific features in the dynamics of the flow field.
An integral part of the experiment was the use of numerical models as forecast and diagnostic tools. The Naval Research Laboratory's Coupled Ocean Atmosphere Model System (COAMPS) provided high-resolution forecasts of the wind field in the vicinity of capes and points, which aided the deployment of the aircraft. Subsequently, this model and the MIUU (University of Uppsala) numerical model were used to support the analysis of the field data.
These are some of the most comprehensive measurements of the topographically forced marine layer that have been collected. SABL proved to be an exceptionally useful tool to resolve the small-scale structure of the boundary layer and, combined with in situ turbulence measurements, provides new insight into the structure of the marine atmosphere. Measurements were made sufficiently far offshore to distinguish between the coastal and open ocean effects. COAMPS proved to be an excellent forecast tool and both it and the MIUU model are integral parts of the ongoing analysis. The results highlight the large spatial variability that occurs directly in response to topographic effects. Routine measurements are insufficient to resolve this variability. Numerical weather prediction model boundary conditions cannot properly define the forecast system and often underestimate the wind speed and surface wave conditions in the nearshore region.
This study was a collaborative effort between the National Science Foundation, the Office of Naval Research, the Naval Research Laboratory, and the National Oceanographic and Atmospheric Administration.
Some of the highlights of an experiment designed to study coastal atmospheric phenomena along the California coast (Coastal Waves 1996 experiment) are described. This study was designed to address several problems, including the cross-shore variability and turbulent structure of the marine boundary layer, the influence of the coast on the development of the marine layer and clouds, the ageostrophy of the flow, the dynamics of trapped events, the parameterization of surface fluxes, and the supercriticality of the marine layer.
Based in Monterey, California, the National Center for Atmospheric Research (NCAR) C-130 Hercules and the University of North Carolina Piper Seneca obtained a comprehensive set of measurements on the structure of the marine layer. The study focused on the effects of prominent topographic features on the wind. Downstream of capes and points, narrow bands of high winds are frequently encountered. The NCAR-designed Scanning Aerosol Backscatter Lidar (SABL) provided a unique opportunity to connect changes in the depth of the boundary layer with specific features in the dynamics of the flow field.
An integral part of the experiment was the use of numerical models as forecast and diagnostic tools. The Naval Research Laboratory's Coupled Ocean Atmosphere Model System (COAMPS) provided high-resolution forecasts of the wind field in the vicinity of capes and points, which aided the deployment of the aircraft. Subsequently, this model and the MIUU (University of Uppsala) numerical model were used to support the analysis of the field data.
These are some of the most comprehensive measurements of the topographically forced marine layer that have been collected. SABL proved to be an exceptionally useful tool to resolve the small-scale structure of the boundary layer and, combined with in situ turbulence measurements, provides new insight into the structure of the marine atmosphere. Measurements were made sufficiently far offshore to distinguish between the coastal and open ocean effects. COAMPS proved to be an excellent forecast tool and both it and the MIUU model are integral parts of the ongoing analysis. The results highlight the large spatial variability that occurs directly in response to topographic effects. Routine measurements are insufficient to resolve this variability. Numerical weather prediction model boundary conditions cannot properly define the forecast system and often underestimate the wind speed and surface wave conditions in the nearshore region.
This study was a collaborative effort between the National Science Foundation, the Office of Naval Research, the Naval Research Laboratory, and the National Oceanographic and Atmospheric Administration.
Abstract
This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. Most EMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6–6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs for RCPs 4.5–8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination of CO2 emissions in all EMICs. Restoration of atmospheric CO2 from RCP to preindustrial levels over 100–1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to preindustrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2.
Abstract
This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. Most EMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6–6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs for RCPs 4.5–8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination of CO2 emissions in all EMICs. Restoration of atmospheric CO2 from RCP to preindustrial levels over 100–1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to preindustrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2.
Abstract
The Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in February 2020 to monitor air quality (AQ) at an unprecedented spatial and temporal resolution from a geostationary Earth orbit (GEO) for the first time. With the development of UV–visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO, and aerosols) can be obtained. To date, all the UV–visible satellite missions monitoring air quality have been in low Earth orbit (LEO), allowing one to two observations per day. With UV–visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be on board the Geostationary Korea Multi-Purpose Satellite 2 (GEO-KOMPSAT-2) satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager 2 (GOCI-2). These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO) and ESA’s Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS).
Abstract
The Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in February 2020 to monitor air quality (AQ) at an unprecedented spatial and temporal resolution from a geostationary Earth orbit (GEO) for the first time. With the development of UV–visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO, and aerosols) can be obtained. To date, all the UV–visible satellite missions monitoring air quality have been in low Earth orbit (LEO), allowing one to two observations per day. With UV–visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be on board the Geostationary Korea Multi-Purpose Satellite 2 (GEO-KOMPSAT-2) satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager 2 (GOCI-2). These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO) and ESA’s Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS).