Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Edward A. Brandes x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
James W. Wilson
and
Edward A. Brandes

Radar can produce detailed precipitation information for large areas from a single location in real time. Although radar has been used experimentally for nearly 30 years to measure rainfall, operational implementation has been slow. Today we find that data are underutilized and both confusion and misunderstanding exist about the inherent ability of radar to measure rainfall, about factors that contribute to errors, and about the importance of careful calibration and signal processing.

Areal and point rainfall estimates are often in error by a factor of two or more. Error sources reside in measurement of radar reflectivity factor, evaporation and advection of precipitation before reaching the ground, and variations in the drop-size distribution and vertical air motions. Nevertheless, radar can be of lifesaving usefulness by alerting forecasters to the potential for flash flooding.

The most successful technique for improving the radar rainfall estimates has been to “calibrate” the radar with rain gages. Simple techniques that combine sparse gage reports (one gage per 1000–2000 km2) with radar produce smaller measurement errors (10–30%) than either system alone. When high accuracy rainfall measurements are needed (average error less than about 10–20%) the advantage of radar is diminished, since the number of gages required for calibration is itself sufficient to provide the desired accuracy.

Full access
Steven V. Vasiloff
,
Dong-Jun Seo
,
Kenneth W. Howard
,
Jian Zhang
,
David H. Kitzmiller
,
Mary G. Mullusky
,
Witold F. Krajewski
,
Edward A. Brandes
,
Robert M. Rabin
,
Daniel S. Berkowitz
,
Harold E. Brooks
,
John A. McGinley
,
Robert J. Kuligowski
, and
Barbara G. Brown

Accurate quantitative precipitation estimates (QPE) and very short term quantitative precipitation forecasts (VSTQPF) are critical to accurate monitoring and prediction of water-related hazards and water resources. While tremendous progress has been made in the last quarter-century in many areas of QPE and VSTQPF, significant gaps continue to exist in both knowledge and capabilities that are necessary to produce accurate high-resolution precipitation estimates at the national scale for a wide spectrum of users. Toward this goal, a national next-generation QPE and VSTQPF (Q2) workshop was held in Norman, Oklahoma, on 28–30 June 2005. Scientists, operational forecasters, water managers, and stakeholders from public and private sectors, including academia, presented and discussed a broad range of precipitation and forecasting topics and issues, and developed a list of science focus areas. To meet the nation's needs for the precipitation information effectively, the authors herein propose a community-wide integrated approach for precipitation information that fully capitalizes on recent advances in science and technology, and leverages the wide range of expertise and experience that exists in the research and operational communities. The concepts and recommendations from the workshop form the Q2 science plan and a suggested path to operations. Implementation of these concepts is expected to improve river forecasts and flood and flash flood watches and warnings, and to enhance various hydrologic and hydrometeorological services for a wide range of users and customers. In support of this initiative, the National Mosaic and Q2 (NMQ) system is being developed at the National Severe Storms Laboratory to serve as a community test bed for QPE and VSTQPF research and to facilitate the transition to operations of research applications. The NMQ system provides a real-time, around-the-clock data infusion and applications development and evaluation environment, and thus offers a community-wide platform for development and testing of advances in the focus areas.

Full access
Margaret A. LeMone
,
Robert L. Grossman
,
Richard L. Coulter
,
Marvin L. Wesley
,
Gerard E. Klazura
,
Gregory S. PouIos
,
William Blumen
,
Julie K. Lundquist
,
Richard H. Cuenca
,
Shaun F. Kelly
,
Edward A. Brandes
,
Steven P. Oncley
,
Robert T. McMillen
, and
Bruce B. Hicks

This paper describes the development of the Cooperative Atmosphere Surface Exchange Study (CASES), its synergism with the development of the Atmosphere Boundary Layer Experiments (ABLE) and related efforts, CASES field programs, some early results, and future plans and opportunities. CASES is a grassroots multidisciplinary effort to study the interaction of the lower atmosphere with the land surface, the subsurface, and vegetation over timescales ranging from nearly instantaneous to years. CASES scientists developed a consensus that observations should be taken in a watershed between 50 and 100 km across; practical considerations led to an approach combining long-term data collection with episodic intensive field campaigns addressing specific objectives that should always include improvement of the design of the long-term instrumentation. In 1997, long-term measurements were initiated in the Walnut River Watershed east of Wichita, Kansas. Argonne National Laboratory started setting up the ABLE array. The first of the long-term hydrological enhancements was installed starting in May by the Hydrologic Science Team of Oregon State University. CASES-97, the first episodic field effort, was held during April–June to study the role of surface processes in the diurnal variation of the boundary layer, to test radar precipitation algorithms, and to define relevant scaling for precipitation and soil properties. The second episodic experiment, CASES-99, was conducted during October 1999, and focused on the stable boundary layer. Enhancements to both the atmospheric and hydrological arrays continue. The data from and information regarding both the long-term and episodic experiments are available on the World Wide Web. Scientists are invited to use the data and to consider the Walnut River Watershed for future field programs.

Full access