Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Eldo Ávila x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Eldo E. Avila
,
Guillermo G. Aguirre Varela
, and
Giorgio M. Caranti

Abstract

Charge transfer between colliding ice particles is measured using a wind tunnel inside a cold room. A cylinder growing by riming in a wind tunnel was used as a target for collisions between 5 and 6 m s−1 with ice spheres of 100-µm diameter. The target temperature was adjusted to simulate different liquid water concentrations. As the target temperature increased, for air temperatures below −18°C, initial positive target charging reversed sign to negative; with a further temperature increase the charging reversed sign again. These measurements, which are relevant to thunderstorm electrification, were carried out with and without riming and results are compared with other works. A novel approach is presented here suggesting a new pair of variables describing the charging.

Full access
Timothy J. Lang
,
Eldo E. Ávila
,
Richard J. Blakeslee
,
Jeff Burchfield
,
Matthew Wingo
,
Phillip M. Bitzer
,
Lawrence D. Carey
,
Wiebke Deierling
,
Steven J. Goodman
,
Bruno Lisboa Medina
,
Gregory Melo
, and
Rodolfo G. Pereyra

Abstract

During November 2018–April 2019, an 11-station very high frequency (VHF) Lightning Mapping Array (LMA) was deployed to Córdoba Province, Argentina. The purpose of the LMA was validation of the Geostationary Lightning Mapper (GLM), but the deployment was coordinated with two field campaigns. The LMA observed 2.9 million flashes (≥ five sources) during 163 days, and level-1 (VHF locations), level-2 (flashes classified), and level-3 (gridded products) datasets have been made public. The network’s performance allows scientifically useful analysis within 100 km when at least seven stations were active. Careful analysis beyond 100 km is also possible. The LMA dataset includes many examples of intense storms with extremely high flash rates (>1 s−1), electrical discharges in overshooting tops (OTs), as well as anomalously charged thunderstorms with low-altitude lightning. The modal flash altitude was 10 km, but many flashes occurred at very high altitude (15–20 km). There were also anomalous and stratiform flashes near 5–7 km in altitude. Most flashes were small (<50 km2 area). Comparisons with GLM on 14 and 20 December 2018 indicated that GLM most successfully detected larger flashes (i.e., more than 100 VHF sources), with detection efficiency (DE) up to 90%. However, GLM DE was reduced for flashes that were smaller or that occurred lower in the cloud (e.g., near 6-km altitude). GLM DE also was reduced during a period of OT electrical discharges. Overall, GLM DE was a strong function of thunderstorm evolution and the dominant characteristics of the lightning it produced.

Free access
Timothy J. Lang
,
Stéphane Pédeboy
,
William Rison
,
Randall S. Cerveny
,
Joan Montanyà
,
Serge Chauzy
,
Donald R. MacGorman
,
Ronald L. Holle
,
Eldo E. Ávila
,
Yijun Zhang
,
Gregory Carbin
,
Edward R. Mansell
,
Yuriy Kuleshov
,
Thomas C. Peterson
,
Manola Brunet
,
Fatima Driouech
, and
Daniel S. Krahenbuhl

Abstract

A World Meteorological Organization weather and climate extremes committee has judged that the world’s longest reported distance for a single lightning flash occurred with a horizontal distance of 321 km (199.5 mi) over Oklahoma in 2007, while the world’s longest reported duration for a single lightning flash is an event that lasted continuously for 7.74 s over southern France in 2012. In addition, the committee has unanimously recommended amendment of the AMS Glossary of Meteorology definition of lightning discharge as a “series of electrical processes taking place within 1 s” by removing the phrase “within 1 s” and replacing it with “continuously.” Validation of these new world extremes 1) demonstrates the recent and ongoing dramatic augmentations and improvements to regional lightning detection and measurement networks, 2) provides reinforcement regarding the dangers of lightning, and 3) provides new information for lightning engineering concerns.

Full access
Stephen W. Nesbitt
,
Paola V. Salio
,
Eldo Ávila
,
Phillip Bitzer
,
Lawrence Carey
,
V. Chandrasekar
,
Wiebke Deierling
,
Francina Dominguez
,
Maria Eugenia Dillon
,
C. Marcelo Garcia
,
David Gochis
,
Steven Goodman
,
Deanna A. Hence
,
Karen A. Kosiba
,
Matthew R. Kumjian
,
Timothy Lang
,
Lorena Medina Luna
,
James Marquis
,
Robert Marshall
,
Lynn A. McMurdie
,
Ernani de Lima Nascimento
,
Kristen L. Rasmussen
,
Rita Roberts
,
Angela K. Rowe
,
Juan José Ruiz
,
Eliah F.M.T. São Sabbas
,
A. Celeste Saulo
,
Russ S. Schumacher
,
Yanina Garcia Skabar
,
Luiz Augusto Toledo Machado
,
Robert J. Trapp
,
Adam C. Varble
,
James Wilson
,
Joshua Wurman
,
Edward J. Zipser
,
Ivan Arias
,
Hernán Bechis
, and
Maxwell A. Grover

Abstract

This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote Sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in the Córdoba and Mendoza provinces in Argentina and western Rio Grande do Sul State in Brazil in 2018–19 that involved more than 200 scientists and students from the United States, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates, and other unusual lightning phenomena, but few tornadoes. The five distinct scientific foci of RELAMPAGO—convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification—are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multinational education, public outreach, and social media data gathering associated with the campaign, is summarized.

Full access
Stephen W. Nesbitt
,
Paola V. Salio
,
Eldo Ávila
,
Phillip Bitzer
,
Lawrence Carey
,
V. Chandrasekar
,
Wiebke Deierling
,
Francina Dominguez
,
Maria Eugenia Dillon
,
C. Marcelo Garcia
,
David Gochis
,
Steven Goodman
,
Deanna A. Hence
,
Karen A. Kosiba
,
Matthew R. Kumjian
,
Timothy Lang
,
Lorena Medina Luna
,
James Marquis
,
Robert Marshall
,
Lynn A. McMurdie
,
Ernani Lima Nascimento
,
Kristen L. Rasmussen
,
Rita Roberts
,
Angela K. Rowe
,
Juan José Ruiz
,
Eliah F.M.T. São Sabbas
,
A. Celeste Saulo
,
Russ S. Schumacher
,
Yanina Garcia Skabar
,
Luiz Augusto Toledo Machado
,
Robert J. Trapp
,
Adam Varble
,
James Wilson
,
Joshua Wurman
,
Edward J. Zipser
,
Ivan Arias
,
Hernán Bechis
, and
Maxwell A. Grover

Abstract

This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in Córdoba and Mendoza provinces in Argentina, and western Rio Grande do Sul State in Brazil in 2018-2019 that involved more than 200 scientists and students from the US, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates and other unusual lightning phenomena, but few tornadoes. The 5 distinct scientific foci of RELAMPAGO: convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multi-national education, public outreach, and social media data-gathering associated with the campaign, is summarized.

Full access