Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: Eric J. Nelkin x
  • Journal of Hydrometeorology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
David T. Bolvin
,
George J. Huffman
,
Eric J. Nelkin
, and
Jackson Tan

Abstract

Satellite-based precipitation estimates provide valuable information where surface observations are not readily available, especially over the large expanses of the ocean where in situ precipitation observations are very sparse. This study compares monthly precipitation estimates from the Integrated Multisatellite Retrievals for GPM (IMERG) with gauge observations from 37 low-lying atolls from the Pacific Rainfall Database for the period June 2000–August 2020. Over the analysis period, IMERG estimates are slightly higher than the atoll observations by 0.67% with a monthly correlation of 0.68. Seasonally, DJF shows excellent agreement with a near-zero bias, while MAM shows IMERG is low by 4.6%, and JJA is high by 1.2%. SON exhibits the worst performance, with IMERG overestimating by 6.5% compared to the atolls. The seasonal correlations are well contained in the range 0.67–0.72, with the exception of SON at 0.62. Furthermore, SON has the highest RMSE at 4.70 mm day−1, making it the worst season for all metrics. Scatterplots of IMERG versus atolls show IMERG, on average, is generally low for light precipitation accumulations and high for intense precipitation accumulations, with best agreement at intermediate rates. Seasonal variations exist at light and intermediate rate accumulations, but IMERG consistently overestimates at intense precipitation rates. The differences between IMERG and atolls vary over time but do not exhibit any discernable trend or dependence on atoll population. The PACRAIN atoll gauges are not wind-loss corrected, so application of an appropriate adjustment would increase the precipitation amounts compared to IMERG. These results provide useful insight to users as well as valuable information for future improvements to IMERG.

Free access
Jackson Tan
,
George J. Huffman
,
David T. Bolvin
,
Eric J. Nelkin
, and
Manikandan Rajagopal

Abstract

A key strategy in obtaining complete global coverage of high-resolution precipitation is to combine observations from multiple fields, such as the intermittent passive microwave observations, precipitation propagated in time using motion vectors, and geosynchronous infrared observations. These separate precipitation fields can be combined through weighted averaging, which produces estimates that are generally superior to the individual parent fields. However, the process of averaging changes the distribution of the precipitation values, leading to an increase in precipitating area and a decrease in the values of high precipitation rates, a phenomenon observed in IMERG. To mitigate this issue, we introduce a new scheme called SHARPEN (Scheme for Histogram Adjustment with Ranked Precipitation Estimates in the Neighborhood), which recovers the distribution of the averaged precipitation field based on the idea of quantile mapping applied to the local environment. When implemented in IMERG, precipitation estimates from SHARPEN exhibit a distribution that resembles that of the original instantaneous observations, with matching precipitating area and peak precipitation rates. Case studies demonstrate its improved ability in bridging between the parent precipitation fields. Evaluation against ground observations reveals a distinct improvement in precipitation detection skill, but also a slightly reduced correlation likely because of a sharper precipitation field. The increased computational demand of SHARPEN can be mitigated by striding over multiple grid boxes, which has only marginal impacts on the accuracy of the estimates. SHARPEN can be applied to any precipitation algorithm that produces an average from multiple input precipitation fields and is being considered for implementation in IMERG V07.

Full access
Mohammad Reza Ehsani
,
Ali Behrangi
,
Abishek Adhikari
,
Yang Song
,
George J. Huffman
,
Robert F. Adler
,
David T. Bolvin
, and
Eric J. Nelkin

Abstract

Precipitation retrieval is a challenging topic, especially in high latitudes (HL), and current precipitation products face ample challenges over these regions. This study investigates the potential of the Advanced Very High Resolution Radiometer (AVHRR) for snowfall retrieval in HL using CloudSat radar information and machine learning (ML). With all the known limitations, AVHRR observations should be considered for HL snowfall retrieval because 1) AVHRR data have been continuously collected for about four decades on multiple platforms with global coverage, and similar observations will likely continue in the future; 2) current passive microwave satellite precipitation products have several issues over snow and ice surfaces; and 3) good coincident observations between AVHRR and CloudSat are available for training ML algorithms. Using ML, snowfall rate was retrieved from AVHRR’s brightness temperature and cloud probability, as well as auxiliary information provided by numerical reanalysis. The results indicate that the ML-based retrieval algorithm is capable of detection and estimation of snowfall with comparable or better statistical scores than those obtained from the Atmospheric Infrared Sounder (AIRS) and two passive microwave sensors contributing to the Global Precipitation Measurement (GPM) mission constellation. The outcomes also suggest that AVHRR-based snowfall retrievals are spatially and temporally reasonable and can be considered as a quantitatively useful input to the merged precipitation products that require frequent sampling or long-term records.

Open access
George J. Huffman
,
David T. Bolvin
,
Eric J. Nelkin
,
David B. Wolff
,
Robert F. Adler
,
Guojun Gu
,
Yang Hong
,
Kenneth P. Bowman
, and
Erich F. Stocker

Abstract

The Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) provides a calibration-based sequential scheme for combining precipitation estimates from multiple satellites, as well as gauge analyses where feasible, at fine scales (0.25° × 0.25° and 3 hourly). TMPA is available both after and in real time, based on calibration by the TRMM Combined Instrument and TRMM Microwave Imager precipitation products, respectively. Only the after-real-time product incorporates gauge data at the present. The dataset covers the latitude band 50°N–S for the period from 1998 to the delayed present. Early validation results are as follows: the TMPA provides reasonable performance at monthly scales, although it is shown to have precipitation rate–dependent low bias due to lack of sensitivity to low precipitation rates over ocean in one of the input products [based on Advanced Microwave Sounding Unit-B (AMSU-B)]. At finer scales the TMPA is successful at approximately reproducing the surface observation–based histogram of precipitation, as well as reasonably detecting large daily events. The TMPA, however, has lower skill in correctly specifying moderate and light event amounts on short time intervals, in common with other finescale estimators. Examples are provided of a flood event and diurnal cycle determination.

Full access
Daniel C. Watters
,
Patrick N. Gatlin
,
David T. Bolvin
,
George J. Huffman
,
Robert Joyce
,
Pierre Kirstetter
,
Eric J. Nelkin
,
Sarah Ringerud
,
Jackson Tan
,
Jianxin Wang
, and
David Wolff

Abstract

NASA’s multisatellite precipitation product from the Global Precipitation Measurement (GPM) mission, the Integrated Multi-satellitE Retrievals for GPM (IMERG) product, is validated over tropical and high-latitude oceans from June 2014 to August 2021. This oceanic study uses the GPM Validation Network’s island-based radars to assess IMERG when the GPM Core Observatory’s Microwave Imager (GMI) observes precipitation at these sites (i.e., IMERG-GMI). Error tracing from the Level 3 (gridded) IMERG V06B product back through to the input Level 2 (satellite footprint) Goddard Profiling Algorithm GMI V05 climate (GPROF-CLIM) product quantifies the errors separately associated with each step in the gridding and calibration of the estimates from GPROF-CLIM to IMERG-GMI. Mean relative bias results indicate that IMERG-GMI V06B overestimates Alaskan high-latitude oceanic precipitation by +147% and tropical oceanic precipitation by +12% with respect to surface radars. GPROF-CLIM V05 overestimates Alaskan oceanic precipitation by +15%, showing that the IMERG algorithm’s calibration adjustments to the input GPROF-CLIM precipitation estimates increase the mean relative bias in this region. In contrast, IMERG adjustments are minimal over tropical waters with GPROF-CLIM overestimating oceanic precipitation by +14%. This study discovered that the IMERG V06B gridding process incorrectly geolocated GPROF-CLIM V05 precipitation estimates by 0.1° eastward in the latitude band 75°N–75°S, which has been rectified in the IMERG V07 algorithm. Correcting for the geolocation error in IMERG-GMI V06B improved oceanic statistics, with improvements greater in tropical waters than Alaskan waters. This error tracing approach enables a high-precision diagnosis of how different IMERG algorithm steps contribute to and mitigate errors, demonstrating the importance of collaboration between evaluation studies and algorithm developers.

Significance Statement

Evaluation of IMERG’s oceanic performance is very limited to date. This study uses the GPM Validation Network to conduct the first extensive assessment of IMERG V06B at its native resolution over both high-latitude and tropical oceans, and traces errors in IMERG-GMI back through to the input GPROF-CLIM GMI product. IMERG-GMI overestimates tropical oceanic precipitation (+12%) and strongly overestimates Alaskan oceanic precipitation (+147%) with respect to the island-based radars studied. IMERG’s GMI estimates are assessed as these should be the optimal estimates within the multisatellite product due to the GMI’s status as calibrator of the GPM passive microwave constellation.

Open access
Robert F. Adler
,
George J. Huffman
,
Alfred Chang
,
Ralph Ferraro
,
Ping-Ping Xie
,
John Janowiak
,
Bruno Rudolf
,
Udo Schneider
,
Scott Curtis
,
David Bolvin
,
Arnold Gruber
,
Joel Susskind
,
Philip Arkin
, and
Eric Nelkin

Abstract

The Global Precipitation Climatology Project (GPCP) Version-2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5° latitude × 2.5° longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit satellite microwave data, geosynchronous-orbit satellite infrared data, and surface rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The dataset is extended back into the premicrowave era (before mid-1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the rain gauge analysis. The dataset archive also contains the individual input fields, a combined satellite estimate, and error estimates for each field. This monthly analysis is the foundation for the GPCP suite of products, including those at finer temporal resolution. The 23-yr GPCP climatology is characterized, along with time and space variations of precipitation.

Full access