Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Francesca Di Giuseppe x
  • Journal of Applied Meteorology and Climatology x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Adrian M. Tompkins
and
Francesca Di Giuseppe

Abstract

Idealized model experiments investigate the advance warning for malaria that may be presently possible using temperature and rainfall predictions from state-of-the-art operational monthly and seasonal weather-prediction systems. The climate forecasts drive a dynamical malaria model for all of Africa, and the predictions are evaluated using reanalysis data. The regions and months for which climate is responsible for significant interannual malaria transmission variability are first identified. In addition to epidemic-prone zones these also include hyperendemic regions subject to high variability during specific months of the year, often associated with the monsoon onset. In many of these areas, temperature anomalies are predictable from 1 to 2 months ahead, and reliable precipitation forecasts are available in eastern and southern Africa 1 month ahead. The inherent lag between the rainy seasons and malaria transmission results in potential predictability in malaria transmission 3–4 months in advance, extending the early warning available from environmental monitoring by 1–2 months, although the realizable forecast skill will be less than this because of an imperfect malaria model. A preliminary examination of the forecasts for the highlands of Uganda and Kenya shows that the system is able to predict the years during the last two decades in which documented highland outbreaks occurred, in particular the major event of 1998, but that the timing of outbreaks was often imprecise and inconsistent across lead times. In addition to country-level evaluation with district health data, issues that need addressing to integrate such a climate-based prediction system into health-decision processes are briefly discussed.

Full access
Francesca Di Giuseppe
,
Samuel Rémy
,
Florian Pappenberger
, and
Fredrik Wetterhall

Abstract

In the absence of a dynamical fire model that could link the emissions to the weather dynamics and the availability of fuel, atmospheric composition models, such as the European Copernicus Atmosphere Monitoring Services (CAMS), often assume persistence, meaning that constituents produced by the biomass burning process during the first day are assumed constant for the whole length of the forecast integration (5 days for CAMS). While this assumption is simple and practical, it can produce unrealistic predictions of aerosol concentration due to an excessive contribution from biomass burning. This paper introduces a time-dependent factor , which modulates the amount of aerosol emitted from fires during the forecast. The factor is related to the daily change in fire danger conditions and is a function of the fire weather index (FWI). The impact of the new scheme was tested in the atmospheric composition model managed by the CAMS. Experiments from 5 months of daily forecasts in 2015 allowed for both the derivation of global statistics and the analysis of two big fire events in Indonesia and Alaska, with extremely different burning characteristics. The results indicate that time-modulated emissions based on the FWI calculations lead to predictions that are in better agreement with observations.

Open access
Francesca Di Giuseppe
,
Florian Pappenberger
,
Fredrik Wetterhall
,
Blazej Krzeminski
,
Andrea Camia
,
Giorgio Libertá
, and
Jesus San Miguel

Abstract

A global fire danger rating system driven by atmospheric model forcing has been developed with the aim of providing early warning information to civil protection authorities. The daily predictions of fire danger conditions are based on the U.S. Forest Service National Fire-Danger Rating System (NFDRS), the Canadian Forest Service Fire Weather Index Rating System (FWI), and the Australian McArthur (Mark 5) rating systems. Weather forcings are provided in real time by the European Centre for Medium-Range Weather Forecasts forecasting system at 25-km resolution. The global system’s potential predictability is assessed using reanalysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 yr of observed burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are good predictors to highlight dangerous conditions. High values are correlated with observed fire, and low values correspond to nonobserved events. A more quantitative skill evaluation was performed using the extremal dependency index, which is a skill score specifically designed for rare events. It revealed that the three indices were more skillful than the random forecast to detect large fires on a global scale. The performance peaks in the boreal forests, the Mediterranean region, the Amazon rain forests, and Southeast Asia. The skill scores were then aggregated at the country level to reveal which nations could potentially benefit from the system information to aid decision-making and fire control support. Overall it was found that fire danger modeling based on weather forecasts can provide reasonable predictability over large parts of the global landmass.

Full access