Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Fred Kucharski x
  • Journal of the Atmospheric Sciences x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Fred Kucharski and Alan J. Thorpe

Abstract

The concept of local extended exergy is here applied to an idealized, dry, and reversible-adiabatic cyclone development. The extended exergy as well as the kinetic energy are decomposed into a mean part, defined by a zonal average, and into a perturbation from the mean. The resulting local energy evolution equations provide an extension of the well-known Lorenz-type available energy equations. A term in the baroclinic conversion rate, connected with static stability anomalies, which is not usually considered, is of significance even in this idealized case study and contributes significantly to the nonlinear equilibration of the baroclinic wave.

Full access
Katarina Kosovelj, Fred Kucharski, Franco Molteni, and Nedjeljka Žagar

Abstract

The paper presents four ensembles of numerical experiments that compare the response to monopole and dipole heating perturbations resembling different phases of the Madden–Julian oscillation (MJO). The results quantify the Rossby and inertio-gravity (IG) wave response using the normal-mode function decomposition. The day 3 response is characterized by about 60% variance in the IG modes, with about 85% of it belonging to the Kelvin waves. On day 14, only 10% of the response variance is due to the Kelvin waves. Although the n = 1 Rossby mode is the main contributor to the Rossby variance at all time scales, the n > 1 Rossby modes contribute over 50% of the balanced response to the MJO heating. In the short range, dipole perturbations produce a response with the maximal variance in zonal wavenumbers k = 2–3 whereas in the medium range the response maximizes at k = 1 in all experiments. Furthermore, the medium-range response to the heating perturbation mimicking MJO phase 6 is found also over Europe.

Full access