Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Fred Kucharski x
  • Bulletin of the American Meteorological Society x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Fred Kucharski, In-Sik Kang, David Straus, and Martin P. King

Abstract

No Abstract available.

Full access
Christophe Cassou, Yochanan Kushnir, Ed Hawkins, Anna Pirani, Fred Kucharski, In-Sik Kang, and Nico Caltabiano

Abstract

The study of Decadal Climate Variability (DCV) and Predictability is the interdisciplinary endeavor to characterize, understand, attribute, simulate, and predict the slow, multiyear variations of climate at global (e.g., the recent slowdown of global mean temperature rise in the early 2000s) and regional (e.g., decadal modulation of hurricane activity in the Atlantic, ongoing drought in California or in the Sahel in the 1970s–80s, etc.) scales. This study remains very challenging despite decades of research, extensive progress in climate system modeling, and improvements in the availability and coverage of a wide variety of observations. Considerable obstacles in applying this knowledge to actual predictions remain.

This short article is a succint review paper about DCV and predictability. Based on listed issues and priorities, it also proposes a unifying theme referred to as “drivers of teleconnectivity” as a backbone to address and structure the core DCV research challenge. This framework goes beyond a preoccupation with changes in the global mean temperature and directly addresses the regional impacts of external (natural and anthropogenic) climate forcing and internal climate interactions; it thus explicitly deals with the societal needs for region-specific climate information. Such a framework also enables the integration of efforts in a large international research community toward advancing the observation, characterization, understanding, and prediction of DCV. Recommendations to make progress are provided as part of the contribution of the CLIVAR “DCVP Research Focus” group.

Open access
Fred Kucharski, Franco Molteni, Martin P. King, Riccardo Farneti, In-Sik Kang, and Laura Feudale
Full access
Martin P. King, Ivana Herceg-Bulić, Ileana Bladé, Javier García-Serrano, Noel Keenlyside, Fred Kucharski, Camille Li, and Stefan Sobolowski

Abstract

Recent studies have indicated the importance of fall climate forcings and teleconnections in influencing the climate of the northern mid- to high latitudes. Here, we present some exploratory analyses using observational data and seasonal hindcasts, with the aim of highlighting the potential of the El Niño–Southern Oscillation (ENSO) as a driver of climate variability during boreal late fall and early winter (November and December) in the North Atlantic–European sector, and motivating further research on this relatively unexplored topic. The atmospheric ENSO teleconnection in November and December is reminiscent of the east Atlantic pattern and distinct from the well-known arching extratropical Rossby wave train found from January to March. Temperature and precipitation over Europe in November are positively correlated with the Niño-3.4 index, which suggests a potentially important ENSO climate impact during late fall. In particular, the ENSO-related temperature anomaly extends over a much larger area than during the subsequent winter months. We discuss the implications of these results and pose some research questions.

Open access